
LIMITED-MEMORY BFGS OPTIMIZATION OF RECURRENT NEURAL NETWORK
LANGUAGE MODELS FOR SPEECH RECOGNITION

Xunying Liu1, Shansong Liu1, Jinze Sha2, Jianwei Yu1, Zhiyuan Xu2, Xie Chen2 & Helen Meng1

1Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong, Hong Kong SAR, China

2Cambridge University Engineering Department
Email: {xyliu,ssliu,jwyu,hmmeng}@se.cuhk.edu.hk {js2294,zyx22,xc257}@cam.ac.uk

ABSTRACT

Recurrent neural network language models (RNNLM) have become
an increasingly popular choice for state-of-the-art speech recogni-
tion systems. RNNLMs are normally trained by minimizing the
cross entropy (CE) using the stochastic gradient descent (SGD) al-
gorithm. The SGD method only uses first-order derivatives and no
higher order gradient information is used to consider the correlation
between model parameters. It is unable to fully capture the curva-
ture of the error cost function. This can lead to slow convergence in
model training. In this paper, a limited-memory Broyden Fletcher
Goldfarb Shannon (L-BFGS) based second order optimization tech-
nique is proposed for RNNLMs. This method efficiently approx-
imates the matrix-vector product between the inverse Hessian and
gradient vector via a recursion over past gradients with a compact
memory requirement. Consistent perplexity and error rate reduc-
tions are obtained over the SGD method on two speech recognition
tasks: Switchboard English and Babel Cantonese. A faster conver-
gence and speed up in RNNLM training time was also obtained.

Index Terms: recurrent neural network, language model, second
order optimization, limited-memory BFGS, speech recognition

1. INTRODUCTION

In order to handle the data sparsity problem associated with back-
off n-gram language models (LMs), language modelling techniques
that represent preceding history contexts in a continuous and lower
dimensional vector space, such as neural network language models
(NNLMs) [1, 28, 24, 21, 29, 16, 30], can be used. Depending on
the network architecture, NNLMs can be categorized into two ma-
jor types: feedforward NNLMs [1, 28, 24, 16], which use a vector
representation of preceding contexts of a fixed number of words, and
recurrent NNLMs (RNNLMs) [21, 22, 29, 30], which use a recurrent
vector representation of variable length full histories. In recent years
RNNLMs and long-short term memory (LSTM) variants [29, 30]
have been shown to define state-of-the-art language modelling per-
formance on a wide range of tasks and give significant improvements
over conventional back-off n-gram LMs, thus drawing increasing re-
search interest [21, 22, 29, 10, 14].

Standard RNNLM training is normally based on minimize the
cross entropy (CE) of the training data using the stochastic gradi-
ent descent (SGD) algorithm [2]. Like other gradient descent based
techniques, the SGD method only uses first-order derivatives. No

This research was supported by MSRA grant no. 6904412 and Chi-
nese University of Hong Kong (CUHK) grant no. 4055065. Jinze Sha and
Zhiyuan Xu were under an Industrial Placement scheme hosted by CUHK.

higher order gradient information [12, 17, 3, 20, 15, 8] is used to con-
sider the correlation between model parameters and therefore can not
fully capture the curvature of the error cost function. This can leads
to unstable and slow convergence in model training. One general ap-
proach to address this issue is to use a quadratic approximation to the
error cost function using Newton methods. However, for tasks with
a large number of parameters to estimate, explicitly computing the
Hessian matrix and its inverse for Newton methods is problematic.

In order to address this issue, truncated Newton methods based
on Hessian-free optimization [20, 15] has been proposed and suc-
cessfully applied to speech recognition tasks [15, 8]. Instead of di-
rectly computing the Hessian matrix and its inverse, the product be-
tween the inverse Hessian and the gradient vector is approximated
using an iterative conjugate gradient (CG) based approach. The
Gauss-Newton matrix based curvature approximate is guaranteed to
positive semidefinite when additional damping is applied [20].

In this paper, an alternative efficient second order optimization
method based on the limited-memory Broyden Fletcher Goldfarb
Shannon (L-BFGS) [17, 3] algorithm is proposed for RNNLM train-
ing. The L-BFGS method efficiently approximates the matrix-vector
product between the inverse Hessian and gradient vector via a recur-
sion over past gradients instead. It only requires a few vectors repre-
senting a history of the past m updates of this matrix-vector product
to be stored. Due to its compact memory requirement, the L-BFGS
method is well suited for optimization problems such as RNNLMs,
where a large number of parameters are estimated.

The rest of the paper is organized as follows. Sections 2 and 3 re-
views the RNNLM model architecture and SGD based training algo-
rithm. Section 4 proposes the L-BFGS based second order optimiza-
tion scheme for RNNLMs. Experimental results on large vocabulary
speech recognition tasks are presented in section 5. Section 6 is the
conclusion and future work.

2. RECURRENT NEURAL NETWORK LMS

In contrast to feedforward NNLMs, recurrent NNLMs [21] represent
the full, non-truncated history hi−1

1 =<wi−1, . . ., w1> for word
wi using the 1-of-k encoding of the most recent preceding word
wi−1 and a continuous vector vi−2 for the remaining context. For
an empty history, this is initialized, for example, to a vector of all
ones. The topology of the recurrent neural network used to com-
pute LM probabilities PRNN(wi|wi−1,vi−2) consists of three lay-
ers, as is shown in figure 1. The full history vector, obtained by con-
catenating the those of wi−1 and vi−2, is fed into the input layer.
The hidden layer compresses the information of these two inputs
and computes a new representation vi−1 using a Sigmoid activa-

6114978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

tion to achieve non-linearity. In order to address vanishing gradient
during RNNLM training, more complicated forms of recurrent layer
activation based on gated recurrent units (GRU) [7] and long short-
term memory (LSTM) units [13, 29] can also be used. This hidden
layer output vector is then passed to the output layer to produce nor-
malized RNNLM probabilities using a softmax activation, as well
as recursively fed back into the input layer as the “future” remain-
ing history to compute the LM probability for the following word
PRNN(wi+1|wi,vi−1).

Input layer

...

Output layer

...
...

Hidden layer

OOV input node

sigmoid

...

softmax

OOS output node

wi−1

vi−2

vi−1

vi−1

PRNN(wi|wi−1,vi−2)

Fig. 1. A full output layer RNNLM with OOS nodes.

To reduce computational cost, a shortlist based output layer vo-
cabulary limited to the most frequent words can be used. In order
to reduce the bias to in-shortlist words during NNLM training, It is
necessary to explicitly model the probability mass of out-of-shortlist
(OOS) words using an additional output node [24, 16]. This ensures
that all training data are used in training, and the probabilities of in-
shortlist words are smoothed by the OOS probability mass to obtain
a more robust parameter estimation. The full output RNNLMs with
OOS nodes is shown in figure 1 is used in this paper.

In state-of-the-art speech recognition systems, NNLMs are often
linearly interpolated with n-gram LMs to obtain both a good cover-
age of contexts and strong generalization ability [28, 11, 24, 21, 29,
16]. The interpolated LM probability is given by

P (wi|hi−1
1) = λPNG(wi|hi−1

1) + (1− λ)PRNN(wi|hi−1
1) (1)

λ is the weight assigned to the back-off n-gram LM PNG(·), and kept
fixed as 0.5 in all experiments of this paper. In the above interpola-
tion, the probability mass of OOS words assigned by the RNNLM
component needs to be re-distributed among all OOS words [24, 16].

3. RNNLM TRAINING USING SGD

Conventional RNNLM training maximizes the log-likelihood, or
equivalently minimize the cross entropy (CE) of the training data.
For a given sequence containing a total of Nw words, the objective
function is given by

JCE(θ) = − 1

Nw

Nw∑

i=1

lnPRNN(wi|hi) (2)

where PRNN(wi|hi) = fsoftmax(vi−1;θ) is the probability of word
wi given history hi. θ is the output layer weight matrix, and vi−1 is
the hidden history vector computed at the hidden layer.

The conventional stochastic gradient descent (SGD) algorithm
is normally used in CE training. For the (t+1)th randomly selected
minibatch of Nw words in total within each training epoch, the gradi-
ent statistics accumulated over the minibatch are scaled by a tunable
learning rate η before being used to update the weight parameters,
for example, at the output layer as,

θ[t+ 1] = θ[t]− η
∂JCE(θ)

∂θ

∣∣∣∣
θ=θ[t]

(3)

The gradient statistics in the above are computed as

∂JCE(θ)

∂θ
= − 1

Nw

Nw∑

i=1

viξ
�
i (4)

where the jth element of the output layer error cost vector ξi is
ξi,j = δ(wj |hi)−PRNN(wj |hi), and δ(wj |hi) are the binary coded
target probabilities δ(wi|hi) = 1 and δ(wj |hi) = 0, ∀j �= i.

Further propagating back the errors to the recurrent layers and
input layers lead to their respective gradient statistics. For Sigmoid
activation based recurrent layer weight matrix ζ, these are

∂JCE(ζ)

∂ζ
= − 1

Nw

Nw∑

i=1

vi−1 (ξi � ui)
�

(5)

where ui,j = vi,j(1 − vi,j) and � denotes an element wise multi-
plication. Similarly the gradient statistics associated with the input
layer weight matrix φ are computed as

∂JCE(φ)

∂φ
= − 1

Nw

Nw∑

i=1

w̃i (ξi � ui)
�

(6)

where w̃i is the vector encoding of the input word wi. For the re-
current and input layers weight parameters ζ and φ, the same above
SGD update in equation (3) is also used where the comparable gradi-
ent statistics are computed respectively using equations (5) and (6).

RNNLMs can be trained using an extended form of the stan-
dard back propagation algorithm, back propagation through time
(BPTT) [27]. This requires the above gradient statistics for the recur-
rent and input layers to be accumulated further over a finite number
of Nτ steps back in time, equivalent to unfolding the RNNLM as a
feed forward neural network with Nτ hidden layers. For example,
the BPTT gradient statistics for the recurrent layer weights are

∂JCE(ζ)

∂ζ
= − 1

Nw

Nw,Nτ∑

i=1,τ=1

vi−τ−1

(
ξi−τ � ui−τ

)�
(7)

4. RNNLM TRAINING USING L-BFGS

4.1. Newton methods

In contrast to Gradient descent, Newton methods explicitly consider
higher order gradient information to model the correlation between
model parameters using a quadratic approximation to the error cost
function. The derived Newton direction is then used in parameter
update. For example, the CE objective function used in RNNLM

6115

training at the kth minibatch can be approximated via a second order
Taylor series with respect to the output layer weight parameters as

JCE(θ[t] + Δθ) ≈ JCE(θ[t]) + Δθ�
∂JCE(θ)

∂θ

∣∣∣∣
θ=θ[t]

+
1

2
Δθ�HtΔθ (8)

The gradient of the above is given by

∇θJ
CE(θ[t] + Δθ) =

∂JCE(θ)

∂θ

∣∣∣∣
θ=θ[t]

+HtΔθ (9)

and setting it to zero leads to the Newton direction

Δθ = −H−1
t

∂JCE(θ)

∂θ

∣∣∣∣
θ=θ[t]

(10)

where the Hessian matrix is computed as Ht,i,j = ∂2JCE(θ)

∂θi∂θj

∣∣∣∣
θ=θ[t]

.

4.2. Quasi-Newton methods

In practice directly applying Newton methods to tasks with a large
number of model parameters can be problematic. First, the evalu-
ation of the Hessian matrix of O(N2) parameters and its inversion
of O(N3) complexity are both computationally expensive. Second,
when the Hessian is not positive-definite, the resulting Newton direc-
tion may not head towards a desired minimum, but rather towards a
opposite direction or saddle point.

In order to address these issues, two types of techniques that
do not require direct calculation of the Hessian can be used. The
first type are based on truncated Newton methods based on Hessian-
free optimization [20, 15]. Instead of directly computing the Hes-
sian matrix and its inverse, the matrix-vector product in equation
(10) is is approximated using an iterative conjugate gradient (CG)
based approach to access the parameter curvature. The conjugate
gradient search is truncated and based on the relative improvement
in the approximate error cost function. The parameter curvature is
based on the Gauss-Newton matrix [20], which is guaranteed posi-
tive semidefinite when additional damping is applied. Hessian-free
optimization can be parallelized for neural networks and have been
successfully applied to speech recognition tasks [15, 8].

The second category of techniques are based on Quasi-Newton
methods. These methods allow the inverse Hessian matrix to be
approximated instead by recursively analyzing past gradient vec-
tors. An earlier form of these techniques was based on the Davidon
Fletcher Powell (DFP) [12] algorithm, before being further devel-
oped into more advanced forms including the symmetric rank one
(SR1) [9] method, and the widely used Broyden Fletcher Goldfarb
Shannon (BFGS) [12] algorithm.

4.3. L-BFGS method for RNNLM training

The standard BFGS algorithm requires a full matrix approximation
to the inverse Hessian of O(N2) parameters. For optimization prob-
lems with a large number of model parameters to train, this approach
becomes computationally highly expensive. In order to address this
issue, a low memory extension to the standard BFGS algorithm,
limited-memory BFGS (L-BFGS) method, can be used. In contrast
to the standard BFGS algorithm that approximates the inverse Hes-
sian directly via a recursion over past gradients, the L-BFGS method

approximates the matrix-vector product between the inverse Hessian
and gradient vector in equation (10). Only a few vectors representing
a history of the past m updates of such matrix-vector product need to
be stored. The gradient history size m can be set small as m < 10.
In this paper, the setting m = 5 is used throughout the experiments.

Algorithm 1 For RNNLM output layer weights θ, L-BFGS algo-
rithm approximates inverse Hessian gradient matrix-vector product

1: qt ← ∂JCE(θ)

∂θ

∣∣∣
θ=θ[t]

2: for i = t-1, t-2, ..., t-m do
3: si ← θ[i+ 1]− θ[i], yi ← qi+1 − qi

4: ρi ← 1

y�i si
, αi ← ρis

�
i qt

5: end for
6: B0

t ← yt−ms�t−m

y�t−myt−m
, z ← B0

tqt

7: for i = t-m, t-m+1, ..., t-1 do
8: βi ← ρiy

�
i z, z ← z + (αi − βi)si

9: end for
10: H−1

t
∂JCE(θ)

∂θ

∣∣∣
θ=θ[t]

← z

For example, When updating the RNNLM output layer weight
parameters θ using the L-BFGS method at the (t + 1)th step, the
inverse Hessian and gradient vector in equation (10) is recursively
approximated using the above algorithm shown in (1). The inverse
Hessian and gradient matrix-vector product obtained in the final step
of the above algorithm is then used to replace the standard gradient
used in the SGD update of equation (3).

4.4. Efficient GPU based training parallelization

The L-BFGS RNNLM training algorithm proposed in this paper
is implemented as an extension to the publicly available CUED-
RNNLM toolkit [5]. In order to improve training efficiency, the
above L-BFGS RNNLM training scheme is integrated into an effi-
cient bunch mode GPU parallelization algorithm based on spliced
sentences [4, 6]. This GPU based parallelization approach was orig-
inally for the SGD method and modified in this work by replacing
the standard gradient information used in SGD in equation (3) by the
inverse Hessian and gradient matrix-vector product produced by the
above L-BFGS algorithm. Each stream in the bunch contains a se-
quence of concatenated sentences to minimize synchronization over-
head among parallel streams. Sentences in the training corpus are
joined into streams that are more comparable in length. Individual
sentence boundaries within each stream are marked to appropriately
reset the recurrent history vector as required. CUBLAS from CUDA
8.0, the basic linear algebra subprograms (BLAS) library optimized
for Nvidia GPUs, is used for fast matrix operation.

5. EXPERIMENTS AND RESULTS

In this section the performance of RNNLMs trained using the pro-
posed L-BFGS algorithm are evaluated on two large vocabulary
speech recognition tasks: the Switchboard English system with 300
hour of conversational telephone speech from Switchboard I for
acoustic modelling, 3.6M words of acoustic transcripts for language
modelling and a 30k words lexicon; the Babel Cantonese system
with 175 hours of telephony speech from the full language pack

6116

LDC release, 1.1M words of transcripts for language modelling and
a 25k words vocabulary.

For both systems, MPE trained stacked hybrid DNN-HMM
acoustic models constructed using the HTK toolkit version 3.5 [31]
are used. Both the top and bottom level DNNs contain 6 Sigmoid
activation based hidden layers of 2000 nodes of each, except the
2nd last bottleneck (BN) layer in the bottom level DNN contains
39 nodes used to produce BN features. Both systems’ bottom level
DNNs were CE trained using 40 dimensional log Mel-filter bank
(FBK) features spliced over a 9 frame widow covering 4 frames to
left and right as the input, and decision tree clustered triphone state
labels as the output layer targets. A total of 12k tied states were
used in the Switchboard system, and 6k tied states were used in
the Cantonese system. The resulting 39 dimensional BN features
extracted were then diagonalized using a global STC transform be-
fore augmented with 39 dimensional HLDA project PLP features.
For the Cantonese system, these were further augmented with static
and differential pitch parameters derived using the Kaldi toolkit [25]
up to the 2nd order. These tandem features were then used as the
inputs to the top level DNN network with the same input feature
context window, hidden layer architecture, and output layer targets
as the bottom level DNNs except all its hidden layers have 2000
nodes. The top level DNNs were initially CE trained before being
further MPE [26] trained. All RNNLMs used 512 hidden layer
nodes and Sigmoid activation. These were trained using either SGD
with newbob scheduling or L-BFGS optimization via the extended
CUED-RNNLM toolkit on NVidia K40 GPUs. These were used
for perplexity and error rate evaluation by rescoring lattices using a
n-gram truncated history based approximation [18].

During training, the proposed L-BFGS optimization was found
to converge much faster than the SGD approach. On the Cantonese
setup as is shown in Fig. 2, for example, the SGD based training re-
quired 16 epochs of 1453 seconds in total, while the L-BFGS train-
ing converged much faster after 6 epochs using only 767 seconds,
thus almost halving the SGD training time. L-BFGS also produced
validation data entropy consistently lower than SGD at every epoch.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Training Epoch

7

7.2

7.4

7.6

7.8

8

8.2

V
al

id
at

io
n

D
at

a
E

nt
ro

py

 767s

 1453s

RNN L-BFGS
RNN SGD

Fig. 2. Validation entropy, total training time on Babel Cantonese.

The perplexity and WER performance of various RNNLMs are
shown in table 1 for the Switchboard English task. In the first section
of the table, using the L-BFGS optimization technique in RNNLM
training, consistent perplexity reductions of 3.5 to 8.5 points and
WER reductions of 0.7% absolute were obtained using the L-BFGS
trained RNNLM (line 2) alone or its equal weighted interpolation

WER%
LM PPL swbd chm
rnn.SGD 104.3 13.9 26.1
rnn.LBFGS 100.8 13.2 25.9
rnn.SGD+rnn.LBFGS 95.8 13.2 25.4

4-gram 97.2 12.9 25.4
4-gram+rnn.SGD 87.0 12.6 24.8
4-gram+rnn.LBFGS 87.7 12.4 24.7
4-gram+rnn.SGD+rnn.LBFGS 85.9 12.4 24.6

Table 1. Perplexity and WER performance of RNNLMs on 2hr
swbd and 1.5hr callhm subsets of NIST eval00 test set.

with the SGD trained baseline RNNLM (line 3) over the SGD
method (line 1). In the second section of table 1, further combining
the 2-way interpolated “rnn.SGD+rnn.LBFGS” model (line 3) with
the 4-gram back-off LM (line 7) using an equal weighted interpo-
lation, reduced but consistent perplexity improvements and WER
reductions of 0.2% absolute were obtained across both test sets
over the baseline “4-gram+rnn.SGD” interpolated model (line 5)
constructed by an equal weighted interpolation between the 4-gram
back-off LM and the SGD trained baseline RNNLM.

The same trends can also be found on a comparable set of exper-
iments conducted on the Babel Cantonese system, as are shown in
in table 2. Before the interpolation with 4-gram LM, the L-BFGS
RNNLMs (line 2 and 3) outperformed the SGD trained baseline
RNNLM by 9 to 17 points of perplexity improvements, and character
error rate (CER) reductions of 0.8%-0.9% absolute. After the equal
weighted interpolation with the 4-gram LM, small but consistent per-
plexity improvements of 2 points and CER reductions of 0.2%-0.3%
were obtained on both test sets over the baseline “4-gram+rnn.SGD”
interpolated model (comparing lines 5 and 7).

CER%
LM PPL devsub1 devsub2
rnn.SGD 136.5 43.5 44.1
rnn.LBFGS 127.9 42.7 43.3
rnn.SGD+rnn.LBFGS 119.7 42.6 43.2

4-gram 113.7 42.1 42.7
4-gram+rnn.SGD 106.8 42.0 42.6
4-gram+rnn.LBFGS 106.2 41.8 42.4
4-gram+rnn.SGD+rnn.LBFGS 104.8 41.8 42.3

Table 2. Perplexity and CER performance of RNNLMs on 3hr dev-
sub1 and 7hr devsub2 subsets of Babel Cantonese development set.

6. CONCLUSION AND RELATION TO PRIOR WORK

In this paper, an efficient limited-memory Broyden Fletcher Gold-
farb Shannon (L-BFGS) based 2nd order optimization method is
proposed for training recurrent neural network language models. Ex-
perimental results on two speech recognition tasks suggest the pro-
posed technique is useful to improve both the performance and train-
ing speed for RNNLMs. To the best of our knowledge, this is the first
work using L-BFGS optimization for RNNLMs. Future work will
focus on L-BFGS training of more complicated forms of RNNLMs
and improving the parallelization method.

6117

7. REFERENCES

[1] Y. Bengio and R. Ducharme (2003), “A neural probabilistic
language model,” Journal of Machine Learning Research,
vol. 3, pp. 1137–1155, 2003.

[2] L. Bottou (1991). “Stochastic gradient learning in neural net-
works”, in Proc. Neuro-Nimes.

[3] R. .H. Byrd, P. Lu, J. Nocedal, and C. Zhou (1995). “A lim-
ited memory algorithm for bound constrained optimization”,
SIAM Journal on Scientific and Statistical Computing, 16(5).

[4] X. Chen, Y. Wang, X. Liu, M. J. F. Gales and P. C. Wood-
land (2014). “Efficient GPU-based training of recurrent neu-
ral network language models using spliced sentence bunch”,
in Proc. ISCA Interspeech2014, Singapore, pp. 641–645.

[5] X. Chen, X. Liu, Y. Qian, M. J. F. Gales, and P. C. Woodland
(2016), “CUED-RNNLM - an open source toolkit for efficient
training and evaluation of recurrent neural network language
models,” in Proc. IEEE ICASSP, Shanghai, pp. 6000–6004.

[6] X. Chen, X. Liu, Y. Wang, M. J. F. Gales, and P. C. Woodland
(2016), “Efficient Training and Evaluation of Recurrent Neu-
ral Network Language Models for Automatic Speech Recog-
nition,” IEEE/ACM Trans. Audio, Speech & Lang. Proc.
24(11): 2146-2157.

[7] K. Cho, B. Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio (2014), “Learning
phrase representations using RNN encoder-decoder for statis-
tical machine translation”, in Proc. EMNLP, pp. 1724–1734.

[8] I.-H. Chung, T. N. Sainath, B. Ramabhadran, M. Picheny, J.
A. Gunnels, V. Austel, U. Chauhari, and B. Kingsbury (2017).
“Parallel deep neural network training for big data on Blue
Gene/Q”, IEEE Trans. Parallel Distrib. Syst. 28(6): 1703–
1714.

[9] A. R. Conn, N. I. M. Gould, and P. .L. Toint (1991). “Conver-
gence of quasi-Newton matrices generated by the symmet-
ric rank one update”, Mathematical Programming, Springer
Berlin/Heidelberg. 50 (1): 177–195.

[10] A. Deoras, T. Mikolov, S. Kombrink and K. Church (2013),
“Approximate inference: A sampling based modeling tech-
nique to capture complex dependencies in a language model,”
Speech Communication, vol. 55, no. 1, pp. 162–177, January.

[11] A. Emami and L. Mangu (2007), “Empirical study of neural
network language models for Arabic speech recognition,” in
Proc. ASRU, Kyoto, Japan, 2007, pp. 147–152.

[12] R. Fletcher (1987). “Practical methods of optimization (2nd
edition)”, New York: John Wiley & Sons, ISBN 978-0-471-
91547-8.

[13] S. Hochreiter, and J. Schmidhuber (1997), “Long short-term
memory,” Neural Computation 9(8): pp. 1735–1780.

[14] Z. Huang, G. Zweig, and B. Dumoulin (2014). “ Cache based
recurrent neural network language model inference for first
pass speech recognition”, in Proc. IEEE ICASSP2014, Flo-
rence, Italy, pp. 6404–6408.

[15] B. Kingsbury, T. N. Sainath, and H. Soltau (2012), “Scalable
minimum bayes risk training of deep neural network acoustic
models using distributed Hessian-free optimization”, in Proc.
ISCA Interspeech, Portland, Oregon, USA, pp. 10–13.

[16] H.-S. Le, I. Oparin, A. Allauzen, J. Gauvain, and F. Yvon
(2013), “Structured output layer neural network language
models for speech recognition,” IEEE Trans. on Audio,
Speech & Lang. Proc., vol. 21, no. 1, pp. 197–206, 2013.

[17] D. C. Liu, and J. Nocedal (1989). “On the mimited mem-
ory method for large scale optimization”, Mathematical Pro-
gramming B, 45 (3): 503–528.

[18] X. Liu, Y. Wang, X. Chen, M. J. F. Gales and P. C. Wood-
land (2014). “Efficient lattice rescoring using recurrent neu-
ral network language models”, in Proc. IEEE ICASSP2014,
Florence, Italy.

[19] X. Liu, X. Chen, Y. Wang, M. J. F. Gales, and P. C. Woodland
(2016). “Two efficient lattice rescoring methods using recur-
rent neural network language models,” IEEE/ACM Trans. Au-
dio, Speech & Lang. Proc. 24(8): 1438-1449.

[20] J. Martens (2010), “Deep learning via Hessian-free optimiza-
tion,” in Proc. ICML, Haifa, Israel, pp. 735–742.

[21] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khu-
danpur (2010), “Recurrent neural network based language
model,” in Proc. ISCA Interspeech, Makuhari, Japan, 2010,
pp. 1045–1048.

[22] T. Mikolov, S. Kombrink, L. Burget, J. H. Cernocky, and
S. Khudanpur (2011), “Extensions of recurrent neural net-
work language model,” in Proc. ICASSP, Prague, Czech Re-
public, 2011, pp. 5528–5531.

[23] F. Morin and Y. Bengio (2005), “Hierarchical probabilistic
neural network language model,” in Proc. International work-
shop on artificial intelligence and statistics, Barbados, 2005,
pp. 246–252.

[24] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland (2010),
“Improved neural network based language modelling and
adaptation,” in Proc. ISCA Interspeech, Makuhari, Japan,
2010, pp. 1041–1044.

[25] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz
et al. (2011). “The kaldi speech recognition toolkit”, in IEEE
ASRU.

[26] D. Povey and P. C. Woodland (2002). “Minimum phone er-
ror and I-smoothing for improved discriminative training”, in
Proc. IEEE ICASSP, Orlando, Florida, USA, vol. 1 105–108.

[27] D. E. Rumelhart, G. E. Hintont, and R. J. Williams (1986),
“Learning representations by back-propagating errors,” Na-
ture, vol. 323, no. 6088, pp. 533–536.

[28] H. Schwenk (2007) , “Continuous space language models,”
Computer Speech & Language, 21(3): 492-518.

[29] M. Sundermeyer, R. Schlüter, and H. Ney (2012), “LSTM
neural networks for language modeling,” in Proc. ISCA In-
terspeech, Portland, OR, 2012.

[30] M. Sundermeyer, H. Ney, and R. Schlüter (2015), “From
feedforward to recurrent LSTM neural networks for language
modeling,” IEEE/ACM Transactions on Audio, Speech &
Language Processing, vol. 23, no. 3, pp. 517–529.

[31] S. Young G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw,
X. Liu, G. Moore, J. Odell, D. Ollason, D. Povey, A. Ragni,
V. Valtchev, P. C. Woodland, and C. Zhang, “The HTK Book
Version 3.5a”, http://htk.eng.cam.ac.uk, 2015.

6118

