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ABSTRACT

Long short-term memory (LSTM) recurrent neural network
language models compress the full context of variable lengths
into a fixed size vector. In this work, we investigate the task
of predicting the LSTM hidden representation of the full con-
text from a truncated n-gram context as a subtask for train-
ing an n-gram feedforward language model. Since this ap-
proach is a form of knowledge distillation, we compare two
methods. First, we investigate the standard transfer based
on the Kullback-Leibler divergence of the output distribu-
tion of the feedforward model from that of the LSTM. Sec-
ond, we minimize the mean squared error between the hidden
state of the LSTM and that of the n-gram feedforward model.
We carry out experiments on different subsets of the Switch-
board speech recognition dataset for feedforward models with
a short (5-gram) and a medium (10-gram) context length. We
show that we get improvements in perplexity and word error
rate of up to 8% and 4% relative for the medium model, while
the improvements are only marginal for the short model.

Index Terms— language modeling, neural networks,
knowledge distillation, student-teacher, speech recognition

1. INTRODUCTION

The main approach for achieving state of the art results in lan-
guage modeling is the recurrent neural network (RNN) [1].
The RNN compresses the variable length context into a fixed
size vector computed from the parameters shared over time.
On the other hand, the n-gram feedforward language model
(LM) is also interesting. When n is small, it has a potential
to be directly integrated into the traditional decoding in auto-
matic speech recognition (ASR) [2, 3]. However, in practice,
a very long n-gram context (over 20 words) is needed for a
feedforward LM to be competitive [4, 5] with the state of the
art RNN using long short-term memory (LSTM) [6, 7] cells.
The model based on the n-gram context does not know that
the input it sees is only a truncated portion of the full con-
text. We can consider training the model such that it has a
chance to recover the truncated part of the context. If a well
trained LSTM LM is available, it can compress the full con-
text into a vector which can be paired to its truncated n-gram
context. Learning such pairs is a vector to vector mapping
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problem suitable for a neural network. We explore it as a
subtask to train n-gram feedforward LM. Since such an ap-
proach is a form of knowledge distillation [8, 9], we inves-
tigate the following two methods. The first approach is the
standard transfer based on the Kullback-Leibler divergence of
the output distribution of the feedforward model from that of
the LSTM. Alternatively, we can minimize the mean squared
error between the hidden state of the LSTM and that of the
n-gram feedforward model. We carry out experiments on dif-
ferent subsets of the Switchboard corpus and demonstrate that
the performance of the LSTM LM can be carried over to a
medium context length n-gram feedforward model.

2. RELATED WORK

The model compression in Bucia et al.’s work [10] consists in
labelling the unlabelled data by using a large ensemble of neu-
ral networks to generate data to train a single model. Such an
idea of transferring the power of a large model or an ensemble
into a single model has been extended by the use of the soft
label in the works by Ba and Caruana [8] as student teacher
learning and by Hinton et al. [9] as knowledge distillation.
The technique has been used in multiple contexts of acoustic
modeling [11, 12, 13, 14, 15]. In [16, 17], the transfer from an
RNN was successfully used to improve feedforward acoustic
models. The application in language processing tasks include
the machine translation [18] and parsing [19]. As opposed
to the aforementioned approaches in which the student is a
neural network, in the early work by Deoras et al. [20, 21]
a student n-gram count LM is trained by using the text data
sampled from a teacher RNN LM. We investigate the possi-
bility to transfer the LSTM performance into a short (5-gram)
and medium (10-gram) context length feedforward models.

3. KNOWLEDGE DISTILLATION IN LANGUAGE
MODELING

3.1. Neural Language Model Topologies

We consider two model topologies: n-gram feedforward neu-
ral network as the student and LSTM-RNN as the teacher.
The feedforward models are based on the fully connected
multilayer perceptron (MLP) except in Sec. 4.6 where the
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convolutional neural network (CNN) is used. All neural
language models we consider use an output layer factorized
using word classes [22]. This factorization has a direct con-
sequence for the knowledge distillation (KD) framework as
shown in the next section. We consider two context sizes
for the student model: 5-gram and 10-gram. The focus of
this work is to evaluate the potential of knowledge transfer to
improve neural language models with a short (5-gram) and
a medium (10-gram) context length. The baseline language
model with a set of parameters 6 and vocabulary V is trained
on a text of T" events w; with context h; by minimizing the
cross entropy between the model’s output and the ground
truth:
T

Zlog po(wi|ht))
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which is equivalent to the minimization of the perplexity. In
the following, py and prstm respectively denote the distribu-
tions of the student model to be trained and the teacher LSTM
model which is assumed to be already trained.

3.2. Cross Entropy Knowledge Distillation (CE-KD)

A standard approach for knowledge distillation is to minimize
the Kullback-Leibler divergence of the student model’s output
distribution from that of the teacher model:

T
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which is equivalent to minimizing the cross entropy:
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Since all neural language models we consider in this work use
the class based factorization:

) - pa(g(we)|he) 2

where g(.) defines the function which maps a word w to its
word class g(w), Eq. (1) can be specifically adapted for the
neural LMs with the class factorized outputs. Instead of di-
rectly substituting the class factorization of Eq. (2) into both
pe and prstyv in Eq. (1), we opt for minimizing the cross en-
tropy on the word part and class part distributions separately,
which gives the following objective function:
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where C denotes the set of word classes.

As reported in previous works, we also found that com-
bining objective functions based on the hard and soft targets
gives better results. The final objective function is therefore
an interpolation as follows:

Lin.ce-xp(0) = ALcexp(0) + (1 — X)L(6) (€]

where the optimal value for the interpolation weight A can be
tuned to optimize the validation perplexity.

3.3. Distillation based on the mean squared error be-
tween hidden states (MSE-KD)

We consider the task of mapping an n-gram context to the full
context LSTM-RNN hidden state using a feedforward neural
network. Our objective is to use such a task as a subtask to
improve n-gram feedforward language models. For that, we
use an objective function based on the mean squared error be-
tween the state of the final LSTM layer y(LSTM) in the teacher
model and the state of the final hidden layer in the feedfor-
ward student LM y;(6):

H (LST™M) _
=7 Z

Like any multitask learning approach, we scale and add
this objective function to the original objective function:

O3 (5)

Lyse(6

Linimse-kp (0) = ALmsg(8) + L(6) (6)

It can be noted that as opposed to the CE-KD case, this
approach does not require computation of the output distribu-
tion of the teacher model. Therefore, MSE-CE has a practical
advantage over the CE-KD when a large vocabulary is used
and class based factorization is not used. The computation of
MSE in Eq. (5) requires the teacher and the student to have
the same dimension at the penultimate layer. To simplify the
comparison between CE and MSE approaches, we tie these
dimensions in all cases. In addition, we can initialize the pa-
rameters of the output layer in the student model by that of the
teacher model since the dimensions match in this condition’.

4. TEXT-BASED EXPERIMENTS

4.1. Data Description

We carry out experiments on different subsets of the Switch-
board speech recognition dataset: the statistics are shown
in Table 1. The cross validation (CV) set was prepared by
randomly choosing sentences from the original Switchboard
(3M) and Fisher (24M) transcriptions, resulting in 133K
words (counting sentence end tokens). The rest of the tran-
scriptions, which amounts to 26.7 M running words, are used
as training data for all language models: both the 4-gram
Kneser Ney count model (KN4) [23] and neural models. This

Experimentally, we found that such an initialization only improves the
perplexity by about 1% relative.
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selection is the same as in [24]. A vocabulary size of 30K is
used. The cross validation set was used for newbob tuning
of the learning rate during neural LM training and for select-
ing the interpolation weight for combining the count LMs
trained on the Switchboard and Fisher parts of the data. The
Hub5_00 set is used as the development data to tune the LM
scale for the recognition experiments in Sec. 5. We evaluate
our models on the Hub5e_01 set.

Table 1. Number of running words, OOV rates and average
sentence lengths in word (Avg. len.) of all data sets and sub-
sets used. The vocabulary size is 30K.

# Words | OOV[%] | Avg. len.

Train 26.7M 1.6 11.2
Cross Validation 133K 0 12.8
Total 45K 1.1 104

Hub5.00 | CH 23K 1.6 9.1
SWB 22K 0.7 12.3

Hub5e_01 65K 1.0 114

4.2. Baseline Neural Language Model Setups

The teacher LSTM-RNN language model is composed of
one projection layer of 600 nodes, one LSTM layer of 600
nodes, and the output layer. The output layer is factorized
using 200 word classes trained using the exchange algorithm
with the bigram two-sided criterion [25]. We use this LSTM
model as the teacher model for all experiments. The stu-
dent feedforward language models has one projection layer
with 100 nodes for each word, two non-linear layers, and the
output layer. The dimension of the final hidden layer is set
to 600 since it is tied with that of the teacher (as discussed
in Sec.3.3). The dimensions of the other hidden layers are
optimized between 600, 1000, 1200 and 1500 for baseline
models as well as when knowledge distillation is used (de-
pending on cases, either 1000 or 1200 were found to work the
best). We use the gated linear unit (GLU) activation function
[5] 2 which transforms the input vector x; to the output vector
yffGLU) by using the weight matrices A, B and bias vectors c,
d as:

yoY = (Azy + ) © o(Bay + d) (7
All neural networks are trained with the stochastic gradient
using newbob learning rate scheduling. Batch size of 64 and
8 are respectively used to train the feedforward models and
the LSTM model. We construct training sequences by con-
catenating sentences until that we get a sequence with more
than 100 words. All neural language models are implemented
using our toolkit rwthlm [26].

2We also found that the GLU converges faster than the sigmoid as re-
ported in [5]. In our experiments, we observed that a sigmoid model can also
reach the same level of perplexity, but it requires more epochs.

Perplexity (Cross Validation)

[| —8—10-gram
- A -5-gram
|

0 0.2 0.4 0.6 0.8 1
Teacher Weights

Fig. 1. Effect of the teacher weight in the CE-KD case (Eq. 4)
on the cross validation set.

4.3. Results for CE-KD

We searched for the optimal value of the interpolation weight
in Eq. (4) between O and 1: the cross validation perplexity
results in Fig. 1 show that the optimal weights were 0.5 and
0.4 respectively for the 10-gram and the 5-gram. It should
be noted that the pure knowledge distillation case A=1 is bet-
ter than the baseline case A=0 for the 10-gram, while such
is not the case for the 5-gram. Table 2 shows the perplex-
ity results. We compute perplexities on the development set
(Hub5-00) and the evaluation set (Hub5e_01) without using
any context across the sentence boundaries such that they are
consistent with the speech recognition setup. For the CV set,
we report the perplexities using the context across sentence
boundaries by concatenating multiple sentences as is the case
during training as described in Sec.4.2. We observe consis-
tent improvements by CE-KD for both the 10-gram and 5-
gram cases. We note that, given the short average sentence
lengths in the Switchboard data, as shown in Table 1, the
baseline perplexities are close between the 5-gram and the
10-gram. Larger improvements by knowledge distillation can
be observed when we consider longer sequences: Only in
Table 3, we report perplexities computed by using contexts
across sentence boundaries on Hub5_00 and Hub5e_01. We
use the same sentence concatenation as for training (Sec.4.2).
We observe up to 8% relative improvements for the medium
case. Such improvements are also potentially interesting for
speech recognition, which we will investigate in the future
work.

Table 2. Perplexity results of cross entropy knowledge distil-
lation (CE-KD).

M CE-KD | CV | Hub5.00 | Hub5e 01 || #Param.

KN4 - 759 | 746 653 ™

LSTM - 22| 608 24 39M
641 | 649 57.0

>-g FF x 61.0 | 624 54.9 24M
609 | 642 554

10-gFE 0 1553 | 500 514 M
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Table 3. Perplexity results of cross entropy knowledge distil-
lation (CE-KD) using contexts across sentence boundaries.

LM CE-KD | Hub5.00 | Hub5e 01
LSTM 5 22 46.0
622 541
>-gFF x 59.5 51.9
603 518
10-g FF x 54.7 47.6

4.4. Results for MSE-KD

The MSE objective function aims to fit the the GLU output
(Eq. 7) in the student model to the LSTM state. Therefore,
we can rather use the gated tangent unit (GTU) for the final
hidden layer? in the student model:

inTU) = tanh(Az; + ¢) © o(Bx: + d) 8)

which is used in the LSTM. After search in {0.2, 0.15, 0.1,
0.05, 0.01, 0.001}, we found 0.01 and 0.05 to be optimal for
the 5-gram and 10-gram cases respectively. Table 4 shows
that the GTU effectively gives slightly better perplexities than
the GLU. Though the MSE-KD improves both 5-gram and
10-gram baseline models, CE-KD (Table 2) gives better PPLs.

Table 4. Perplexity results for MSE-KD using the gated linear
unit (GLU) or the gated tangent unit (GTU) in the final hidden
layer. The baseline perplexities are copied from Table 2 for
easy comparison.

Context | MSE-KD | Type | CV | Hub5.00 | HubSe 01
- 64.1 64.9 57.0
5-gram X GLU | 63.0 64.3 56.4
X GTU | 614 63.4 55.4
- 60.9 64.2 55.4
10-gram X GLU | 579 61.8 53.7
X GTU | 56.4 60.5 52.6

4.5. MLP vs CNN as the student model

We evaluate a 5-gram student CNN feedforward model. We
use the CNN composed of 4 convolutional layers (200 filters
for each layer, with the filter size 2 and the word dimension of
100) followed by one fully connected layer of dimension 600.
The GLU activation is used in all layers. We only evaluate
CE-KD, which gave better PPL than MSE-KD in the previous
section. The results are shown in Table 5. We first observed
that the baseline CNN gives slightly better baseline PPL than
the MLP case. However, the gap disappears after distillation.

Table 5. MLP vs. CNN in CE based distillation. The best
PPLs for the MLP are copied from Table 2 for easy compari-
son. All modes are 5-grams.

Model | CE-KD | CV | Hub5.00 | Hub5e_ 01 | #Params.
64.1 64.9 57.0

MLP X 61.0 62.4 54.9 24M
62.4 64.1 55.9

CNN X 61.1 62.6 55.0 2M

3For all other layers, we use the GLU which we found to achieve slightly
better CV PPL than the GTU in our preliminary experiments.

5. SPEECH RECOGNITION EXPERIMENTS

5.1. ASR and Lattice Rescoring Setups

Our baseline ASR setup is based on the system presented in
[24]. From that system, we only use one acoustic model based
on a 5-layer bidirectional LSTM-RNN with 500 nodes in each
layer and the rescoring pipeline is simplified by applying the
lattice rescoring only once using a single neural LM. The lat-
tice rescoring with all neural models is done using the push
forward algorithm [27]. In addition to a beam pruning, we use
a recombination pruning with order 9. The LM scores of the
KN4 and the neural models are interpolated using the weight
optimized on the CV set.

5.2. Results

Table 6 shows the word error rate (WER) results. For the 10-
gram case, we observed significant improvements in WER
from both CE and MSE based distillation on all subsets. Im-
provements in WER of up to 4% relative are obtained and the
performance is competitive to the LSTM. In contrast, for the
5-gram case, the benefit from knowledge distillation does not
seem to carry over to the ASR results.

Table 6. WER results. All results are reported after interpo-
lation with the baseline count model (KN4).

Hub5_00 (Dev) Hub5e_01
Model KD CH SWB (Eval)
Type | PPL | WER | PPL | WER | PPL | WER
KN4 - 80.5 | 192 | 68.8 | 105 | 653 | 15.0
LSTM - 63.1 | 175 | 524 | 92 |49.7 | 133

658 | 17.8 | 56.8 | 9.6 | 53.8 | 139
5g FF CE | 647 | 17.8 | 558 | 95 | 529 | 13.7
MSE | 652 | 17.6 | 562 | 95 |53.1 | 138
65.0 | 17.7 | 55.0 | 9.5 | 52.0| 138
10gFF | CE | 62.0 | 174 | 523 | 9.2 | 49.7 | 134
MSE | 63.1 | 175 | 527 | 9.2 |50.2 | 13.3

6. CONCLUSION AND FUTURE WORK

Experiments were carried out on Switchboard datasets. We
observed that using a student-teacher approach, ASR perfor-
mance using LSTM LMs can be carried over to feedforward
LMs while it requires a large enough n-gram context. Further
work will concentrate on the application of this approach for
tasks with longer sentences, where the ASR performance gap
between the feedforward model and the LSTM can be larger.
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