
RESCORING N-BEST SPEECH RECOGNITION LIST BASED ON ONE-ON-ONE
HYPOTHESIS COMPARISON USING ENCODER-CLASSIFIER MODEL

Atsunori Ogawa, Marc Delcroix, Shigeki Karita, and Tomohiro Nakatani

NTT Communication Science Laboratories, NTT Corporation, Kyoto, Japan

ABSTRACT
This paper proposes a new model for accurately rescoring (rerank-
ing) N -best speech recognition hypothesis lists. The model is
based on state-of-the-art neural networks (NNs) and provides the
minimum necessary functionality to perform N -best rescoring, i.e.
one-on-one hypothesis comparison on a given N -best list in terms
of word error rates (WERs). The model is composed of a long
short-term memory (LSTM)-based encoder network followed by a
fully-connected feedforward NN-based binary-class classifier net-
work. Given the feature vector sequences of two hypotheses to be
compared, this encoder-classifier (EC) model encodes these features
and outputs binary-class probabilities that indicate which hypothesis
has the lower WER. Then, depending on the output, the ranks of
these hypotheses can be swapped. By repeating this one-on-one
hypothesis comparison, a reranked N -best list can be obtained. In
N -best rescoring experiments using a large scale speech corpus, the
proposed EC model steadily outperforms an LSTM-based language
model (LSTMLM), which is a strong and widely-used competitor.
In addition, by incorporating the LSTMLM scores as an additional
feature vector dimension, the N -best rescoring performance of the
EC model is further improved. The improved EC model achieves a
10% relative WER reduction from the LSTMLM baseline.

Index Terms— Speech recognition, N -best list, N -best rescor-
ing, one-on-one hypothesis comparison, encoder-classifier model

1. INTRODUCTION

Recently, great progress has been made on automatic speech recog-
nition (ASR) technology based on the introduction of state-of-the-
art neural networks (NNs) [1, 2], and various types of ASR-based
applications, including voice search services and spoken dialogue
systems, have been actively developed. Despite this great progress,
in some situations such as performing ASR in noisy environments
and/or performing ASR for casual-style speech, ASR accuracy re-
mains at an unsatisfactory level [3, 4].

Some tasks that require high ASR accuracy employ multiple
speech recognition hypotheses (word sequences), which are repre-
sented in the form of, e.g. the N -best list, word lattice, and word
confusion network [5]. This is because 1-best speech recognition
hypotheses may contain many errors in the severe situations de-
scribed above, but hypotheses that have significantly lower word er-
ror rates (WERs) than the 1-best hypotheses can be found in multi-
ple hypotheses if they are rescored (reranked). For example, in the
CHiME-4 noisy speech recognition challenge [6], the top scoring
systems performed N -best rescoring [7,8] or lattice rescoring [9,10]
using recurrent NN language models (RNNLMs) at the final step of
ASR. N -best lists have also been exploited in spoken dialogue sys-
tems [11, 12].

In this paper, we focus on the rescoring of N -best speech recog-
nition hypothesis lists. Currently the most widely-used models for
N -best rescoring are RNNLMs [13,14], and in particular, long short-
term memory (LSTM)-based RNNLMs (LSTMLMs) [7, 8, 15]. An

LSTMLM has much better word prediction ability than a conven-
tional n-gram LM. It can be trained using the same text corpus (i.e.
reference (correct) transcriptions) used for training an n-gram LM.
In other words, except in a few studies [16,17], an LSTMLM cannot
be trained while taking ASR errors into account. An LSTMLM pro-
vides scores for each of the hypotheses in a given N -best list. These
scores are interpolated with the ASR scores attached to each of the
hypotheses and these interpolated scores are used to rerank the hy-
potheses in the list. Note that, even though an LSTMLM performs
well in N -best rescoring, it was originally developed to predict the
next word (the vocabulary size is usually very large) and was not
developed to undertake N -best rescoring.

In contrast to the LSTMLMs, discriminative language models
(DLMs) [18–21] were originally developed for N -best rescoring. A
DLM can be trained taking ASR errors into account using a training
data set other than that used for training the n-gram LM. A DLM
is based on a log-linear model that uses n-gram counts as features.
Its model parameters (i.e. the weights of the features) are optimized
based on the minimization of a loss function, using N -best lists pro-
vided by an ASR system for the training data set. The loss function
is designed so that the trained DLM can perform hypotheses rerank-
ing for a given N -best list. With the loss function, two hypotheses
are compared in terms of their absolute WERs for all (or selected)
pairs of hypotheses in all the N -best lists of the training data set. As
with the LSTMLM, a trained DLM provides scores for each of the
hypotheses in a given N -best list, and these scores are interpolated
with the ASR scores to perform hypothesis reranking of the list. The
design of the loss function is sophisticated. It simultaneously takes
into account all (or many) pairs of hypotheses to be compared. How-
ever, as described below, we can develop a model based on a simpler
design for N -best rescoring.

Let us consider the minimum functionality needed to perform
N -best rescoring. For a given N -best list, if we can judge that the
WER of the vth hypothesis is lower than that of the uth hypothesis
(u < v), we can swap the ranks of these hypotheses. As with tradi-
tional sorting algorithms [22], by repeating this one-on-one hypoth-
esis comparison for pairs of hypotheses in the list and, if necessary,
by swapping the ranks of the hypotheses, we can obtain a reranked
N -best list. All we need to do is to judge which hypothesis has the
lower WER. In this paper, we refer to this judgment as one-on-one
hypothesis comparison (duel), and this is the minimum necessary
functionality to perform N -best rescoring.

We propose a new N -best rescoring model based on state-of-
the-art NNs (Section 2). In contrast to the LSTMLMs and DLMs, the
model focuses only on providing the minimum necessary function-
ality to perform N -best rescoring, i.e. one-on-one hypothesis com-
parison on a given N -best list. The model is composed of an LSTM-
based encoder network [23–25] followed by a fully-connected feed-
forward (FCFF) NN-based binary-class classifier network. We also
propose efficient procedures for training the proposed EC model
(Section 2.2) and for performing N -best rescoring using the trained
EC model (Section 2.3). In experiments using a large scale speech
corpus (Section 3), the EC model steadily outperforms an LSTMLM,

6099978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

�
�
���

�
�

�	

�
�
�

����

�

�
�

����

��������

��������

Encoder

Classifier

If ������ ���

If �� ��� ���

Fig. 1. Proposed encoder-classifier (EC) model that performs one-on-one hypothesis comparison for N -best rescoring.

which is a widely-used strong competitor. In addition, by using the
LSTMLM scores as an additional feature, the N -best rescoring per-
formance of the EC model can be further improved.

2. ENCODER-CLASSIFIER MODEL

We propose a new N -best rescoring model, called an encoder-
classifier (EC) model. We also propose procedures for its efficient
training and evaluation.

2.1. Structure of EC Model

The propsed EC model is based on state-of-the-art NNs and the fo-
cus is on providing the minimum necessary functionality to perform
N -best rescoring. Given an N -best list, the EC model performs a
one-on-one hypothesis comparison in terms of the WERs of two hy-
potheses to be compared.

Let Wu = wu
1 , w

u
2 , · · · , wu

L(Wu) be the uth hypothesis (word
sequence) of length (number of words) L(Wu) in a given N -best
list. Au = au

1 ,a
u
2 , · · · ,au

L(Wu) is the auxiliary feature vector se-
quence that corresponds to Wu. The auxiliary feature vector au

i for
the word wu

i is, for example, composed of an acoustic score (log
likelihood) and a linguistic score (log probability) provided by an
ASR system to the word wu

i . Xu = xu
1 ,x

u
2 , · · · ,xu

L(Wu) is the
feature vector sequence that corresponds to Wu. The feature vector
xu
i of the word wu

i is obtained as xu
i = concat(embed(wu

i),a
u
i),

where embed(·) denotes the NN-based word embedding operation
and concat(·) denotes the vector concatenation operation.

Figure 1 shows the proposed EC model that performs a one-on-
one hypothesis comparison for N -best rescoring. Given the feature
vector sequences of the uth hypothesis Wu and the vth hypothesis
W v (u < v), i.e. Xu and Xv , the proposed model is assumed to
output the probabilities of binary class symbols, i.e. P (y|Xu,Xv)
for y = {0, 1}, so that they satisfy,{

P (0|Xu,Xv)≥P (1|Xu,Xv) if wer(Wu) ≤ wer(W v),

P (0|Xu,Xv)<P (1|Xu,Xv) otherwise,
(1)

where wer(·) is a function that returns the WER of a given hypoth-
esis and

∑
y P (y|Xu,Xv) = 1. If the upper inequality is satisfied,

the model estimates that the WER of Wu is not greater than that
of W v , and their ranks remain unchanged. Conversely, if the lower
inequality is satisfied, the model estimates that the WER of Wu is
higher than that of W v , and we swap their ranks.

The lengths of Wu and W v , i.e. L(Wu) and L(W v), may
differ. To deal with hypotheses with different lengths, we employ
a unidirectional LSTM unit-based encoder network [23–25] in the
proposed model. By using an encoder network, these two hypotheses

can be represented with fixed-length encoded hidden state vectors,
and the hypotheses can be fairly compared by using their encoded
vectors. Given the feature vector xu

i of the current word wu
i and the

previous hidden state vector hu
i−1, a one-layer LSTM unit provides

the current hidden state vector hu
i as follows,

hu
i = lstm(xu

i ,h
u
i−1), (2)

where lstm(·) denotes the operation of a one-layer LSTM unit and
hu
0 = 0. hu

i encodes the feature vector sequence xu
1 ,x

u
2 , · · · ,xu

i

of the word sequence wu
1 , w

u
2 , · · · , wu

i . By repeating this operation
for each feature vector xu

i in Xu, we can obtain the hidden state
vector hu

L(Wu) that encodes Xu. By also applying this operation
to Xv , we can obtain the encoded hidden state vector hv

L(Wv) of
Xv (parameters are shared between the LSTMs for encoding Xu

and Xv). Then, we concatenate hu
L(Wu) and hv

L(Wv) to obtain the
concatenated encoded hidden state vector hu,v as follows,

hu,v = concat(hu
L(Wu),h

v
L(Wv)). (3)

The classifier network follows the encoder network. The classi-
fier network is composed of a one-layer FCFF linear layer followed
by the softmax activation function. The concatenated encoded hid-
den state vector hu,v provided by the encoder network is input to the
classifier network and, finally, we obtain the binary class probabili-
ties, i.e. P (y|Xu,Xv) for y = {0, 1}, as follows,

zu,v = linear(hu,v),

P (y|Xu,Xv) = softmax(zu,v)y,
(4)

where linear(·) and softmax(·) denote the operations of a one-
layer FCFF linear layer and the softmax activation function, respec-
tively.

In the above explanation, we used a one-layer unidirectional
LSTM unit for the encoder network and a one-layer FCFF linear
layer for the classifier network. We can also use multiple layers in-
stead and, as regards the encoder network, we can also use a bidirec-
tional LSTM unit. Furthermore, we can exploit the abilities of other
N -best rescoring models in the EC model by adding their scoring
results as additional dimensions of the auxiliary feature vectors.

2.2. Efficient Training of EC Model

We train the proposed EC model by feeding it with pairs of hypothe-
ses and their corresponding binary teacher labels (i.e. y = {0, 1}).
From an N -best list for an input utterance, we can extract NC2 pairs
of hypotheses. Typically, N is set at 100 to 1000, and thus the num-
ber of pairs in the list is large. In addition, a training data set usually
contains more than tens of thousands of utterances. Thus, the total

6100

number of hypothesis pairs in the training data set is huge and, in
reality, it is impossible to use all the pairs for model training.

The main purpose of N -best rescoring is to find the oracle (i.e.
the lowest WER) hypothesis from a given N -best list in the evalua-
tion phase. In other words, as long as we can find the oracle hypoth-
esis from the list, we do not always need to be concerned about the
ranks and/or the order of the other remaining hypotheses. We have
developed an efficient EC model training procedure that focuses on
achieving this purpose.

First, we make a set of the selected hypotheses from an N -best
list to efficiently perform one-on-one hypothesis comparisons during
the EC model training. All the comparisons are performed between
the oracle hypothesis and one of the other selected hypotheses. In
all the comparisons (duel), the oracle hypothesis has to defeat the
competitor hypothesis (i.e. the EC model has to estimate that the
oracle hypothesis has a lower WER than the competitor hypothesis).
To guarantee the minimum variety of the hypothesis comparisons,
we preferentially select the following four hypotheses as the com-
petitors: 1) the 1-best (i.e. the highest ASR score) hypothesis, 2) the
second lowest WER hypothesis, 3) the lowest rank (i.e. the lowest
ASR score) hypothesis, and 4) the highest WER hypothesis. Hy-
potheses 1) and 2) are selected as strong competitors that are difficult
to beat. Conversely, hypotheses 3) and 4) are selected as the weak
competitors that are easy to beat. To increase the variety of the hy-
pothesis comparisons, in addition to the above four hypotheses, we
also include in the set hypotheses selected from the N -best list with
an equal rank interval.

Let us assume that, as a result of the hypothesis selection de-
scribed above, M hypotheses (including the oracle hypothesis) are
selected in the set. From this set, we can extract M−1 pairs between
the oracle and competitor hypotheses. We found in the preliminary
experiments that M can be set at a few dozen, i.e. M≪NC2, and
the efficiency of the EC model training can be greatly increased.

Second, we train the EC model by feeding it with the above ob-
tained M − 1 hypothesis pairs and their corresponding binary class
teacher labels. Figure 2 (top) shows the core part of the training pro-
cedure. We assign the oracle hypothesis to the uth hypothesis Wu

and the competitor hypothesis to the vth hypothesis W v (u < v).
The features of this hypothesis pair, i.e. (Xu,Xv), and the teacher
label y = 0 that indicates wer(Wu) ≤ wer(W v) are fed to the EC
model and its parameters are updated. We perform this core proce-
dure again by swapping the hypotheses and changing the teacher
label binary value (i.e. we double the training data). We repeat
this procedure for each oracle and competitor hypothesis pair in all
the selected hypothesis sets. With this procedure, the EC model is
trained so that it can distinguish the oracle hypothesis from the other
hypotheses in a given N -best list in the evaluation phase.

2.3. Finding Oracle Hypothesis Using EC model

Using the trained EC model, in the evaluation phase, we find the or-
acle hypothesis from a given N -best list as shown in Fig. 2 (bottom).
As with the first step of the bubble sort [22], we repeat a one-on-one
hypothesis comparison (duel) from the top to the bottom of the list.
Then, we select the surviving hypothesis as the oracle hypothesis.

Note that, as with the N -best rescoring procedure using the con-
ventional N -best rescoring models, also in hypothesis comparisons
using the EC model, we can use ASR scores attached to each of the
hypotheses. In this case, we use the binary class symbol probabilities
provided by the EC model as the additional scores (log probabilities)
and obtain their weighted sum with the corresponding ASR scores
(log likelihoods). We can obtain the scores of Wu and W v (u < v),

Oracle

Competitor

Competitor

Oracle

EC
model

EC
model

Swap

Lose
1

3
Win

Lose

Win

Lose

Win

-best list

Estimated

oracle hypothesis

3

2

Fig. 2. (Top) Core part of training procedure. (Bottom) One-on-one
hypothesis comparison (duel) to find oracle hypothesis.

i.e. s(Wu) and s(W v), used for hypothesis comparison as follows,{
s(Wu) = (1− λ) log p(Wu|O) + λ logP (0|Xu,Xv),

s(W v) = (1− λ) log p(W v|O) + λ logP (1|Xu,Xv),
(5)

where O is the acoustic feature vector sequence of an input utter-
ance, log p(W r|O) is the ASR score provided to the rth hypothesis
W r , and λ is the weight for the EC model scores (0 ≤ λ ≤ 1).

3. EXPERIMENTS

We conducted experiments using the corpus of spontaneous Japanese
(CSJ) [26], which is a large scale lecture speech corpus. We com-
pared the proposed EC model with an LSTMLM [7, 8, 15] in terms
of the WER of the 1-best hypotheses obtained by performing N -
best rescoring. We also evaluated an EC model that exploits scores
provided by the LSTMLM as an additional auxiliary feature vector
dimension. In the following sections, the training and evaluation of
the NN-based models were both performed using Chainer [27].

3.1. Experimental Settings

The data set for training ASR models consisted of 250 hours of
speech, 198k utterances, and 3.4M words. Using this data, we
trained a convolutional NN (CNN)-based acoustic model [28], a tri-
gram LM, and an LSTMLM. The vocabulary size of these LMs was
set at 31k (the words that appear only one time in the training data
were mapped to the unknown word). The structure of the LSTMLM
is shown in Table 1. Its parameters were randomly initialized and
then iteratively updated with a stochastic gradient descent (SGD)
optimizer and the backpropagation through time algorithm, based on
the minimization of the cross-entropy loss. Details of the LSTMLM
training recipe can be found on the Chainer homepage [27] (we
found that this recipe also worked very well in our experiments).

Table 2 shows details of the EC model training, development,
and evaluation data sets. We performed ASR on these data sets with
a weighted finite state transducer (WFST)-based one-pass speech
recognizer [29] using the CNN acoustic model and the trigram LM
described above, and we obtained a 200-best hypothesis list for
each of the utterances in these data sets. At the same time, the
17-dimensional ASR-based auxiliary feature (e.g. the acoustic and
linguistic scores) vector was extracted word-by-word for each of the

6101

Table 1. Structures of the LSTMLM and EC model. In both models,
nodes are the same for the word embedding layers, unidirectional
LSTM units, and FCFF linear layers.

LSTMLM EC
nodes 650 100

LSTM layers 2 1
FCFF layers 1 1

Softmax output size 31k 2
total parameters 47M 2.9M

hypotheses. These features are detailed in [30]. To efficiently train
the EC model, as described in Section 2.2, we performed hypothesis
selection for the training data. We selected 20 (=M) hypotheses
(including the oracle hypothesis) for each of the 200 (=N)-best lists
in the training data. The selected hypotheses were used for the EC
model training with the procedure described in Section 2.2.

The structure of the EC model is shown in Table 1. Note that
its total number of parameters (2.9M) is very small compared with
that of the LSTMLM (47M). The 100-dimensional embedded word
vectors are concatenated with the 17-dimensional auxiliary feature
vectors and fed to the EC model. We randomly initialized all the pa-
rameters in the EC model and then iteratively updated them with an
Adam optimizer (α=0.0001) [31] and the backpropagation through
time algorithm, which was truncated at the beginning of the hypothe-
ses (the batch size was set at ten utterances), based on the minimiza-
tion of the cross-entropy loss. We iterated the training for ten epochs
and selected the model that provided the lowest loss for the develop-
ment data as the model used for the evaluation.

As described in Section 2.1, we also trained an EC model that
exploited scores provided by the LSTMLM as the 18th dimension
of the auxiliary feature vectors. The LSTMLM provided a score
(log probability) word-by-word for each of the hypotheses in all the
data sets. Then, an EC model, which had the same structure as the
above described EC model (Table 1), was trained using feature vec-
tors consisting of the 100-dimensional embedded word vectors and
the 18-dimensional extended auxiliary feature vectors.

In the evaluation phase, we performed N -best rescoring using
the LSTMLM and the two EC models described above by taking the
weighted sum of their scores and the ASR scores (see Section 2.3 for
the N -best rescoring procedure using the EC models). The weight
λ for these models was changed from 0 to 1 in 0.05 steps. When
λ was set at 1, these models performed N -best rescoring alone (i.e.
they did not use the ASR scores). For each model, the λ value that
provided the best N -best rescoring performance (i.e. the lowest 1-
best hypothesis WER) for the development data was selected as the
optimal value, and this value was used for N -best rescoring on the
evaluation data.

3.2. Experimental Results
Table 3 shows N -best rescoring results obtained with the three mod-
els for the development and evaluation data. We can confirm that the
LSTMLM steadily reduces the WERs from the ASR baselines and
the EC model provides additional WER reductions from the good
LSTMLM baselines. We can also confirm that the EC model trained
with the LSTMLM score provides further large WER reductions.
These results indicate that the LSTMLM and EC model have com-
plementary abilities, and the EC model can efficiently incorporate
the ability of the LSTMLM. It achieves 10% relative WER reduc-
tions from the LSTMLM baselines.

Figure 3 shows the WERs for the development data obtained
with the three models as a function of the weight λ for these mod-
els. We can confirm that there is an optimal value range of λ for
the LSTMLM (at around 0.8) and it needs to be used with the ASR
scores since its WER when λ = 1 becomes much worse. Con-

Table 2. Details of the EC model training (ECTr), development
(Dvlp), and evaluation (Eval) data sets. “OOV” denotes the out-of-
vocabulary rate [%]. “3g” and “LSTMLM” denote the perplexities
obtained with the trigram LM and LSTMLM. #hyps of ECTr is the
number after performing hypothesis selection.

Data hours #utts #words #hyps OOV 3g LSTM
ECTr 271 215k 3.5M 3.6M 2.18 — —
Dvlp 6.0 4822 78k 670k 2.53 79.3 42.5
Eval 5.7 3163 70k 463k 1.87 77.7 48.3

Table 3. N -best rescoring results in WER [%] for the development
and evaluation data obtained with the LSTMLM, EC model, and EC
model trained with the LSTMLM score. WERs of the ASR (trigram)
baseline and oracle hypotheses are also shown.

Model Dvlp Eval
ASR (trigram) baseline 18.1 14.8

LSTMLM baseline 17.3 14.2
EC model 16.6 13.8

EC with LSTMLM score 15.5 12.8
Oracle 11.1 9.3

��

��

��

��

��

��

�	� �	� �	
 �	� �	� �	�

20

19

18

17

16

15

0.0 0.2 0.4 0.6 0.8 1.0

LSTMLM

EC model

EC with LSTMLM score

W
o

rd
 e

rr
o

r
ra

te
 [

%
]

Weight for -best rescoring model

Fig. 3. WERs for the development data obtained with the LSTMLM,
EC model, and EC model trained with the LSTMLM score as a func-
tion of the weight λ for these N -best rescoring models.

versely, the optimal values of λ for the EC models range very widely
(around 0.4 to 1) and they need not be used with the ASR scores
since they show the best (or nearly the best) WERs when λ = 1.
This robustness against the weight λ is also an advantage of the EC
model over the LSTMLM.

4. CONCLUSION AND FUTURE WORK

We have proposed a new N -best rescoring model. The proposed
encoder-classifier (EC) model performs a one-on-one hypothesis
comparison on a given N -best list. We have confirmed its superior
N -best rescoring performance experimentally. This is a general
framework, and it can be applied in other research fields that use the
N -best list form of hypotheses, e.g. machine translation [32, 33].

Future work will include comparison with the DLMs [18–21]
and the discriminatively trained LSTMLMs [16, 17]. We also plan
to improve the performance of the proposed EC model with (1) the
use of multi-layered networks, (2) the use of bidirectional LSTM
units, (3) an increase in the model size, and (4) the introduction of
an attention mechanism [23–25].

6102

5. REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T.N. Sainath,
and B. Kingsbury, “Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research
groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
82–97, Nov. 2012.

[2] D. Yu and L. Deng, Automatic speech recognition: A deep
learning approach, Springer-Verlag London, 2015.

[3] J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, “An overview
of noise-robust automatic speech recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
22, no. 4, pp. 745–777, Apr. 2014.

[4] T. Hori, S. Araki, T. Yoshioka, M. Fujimoto, S. Watanabe,
T. Oba, A. Ogawa, K. Otsuka, D. Mikami, K. Kinoshita,
T. Nakatani, A. Nakamura, and J. Yamato, “Low-latency real-
time meeting recognition and understanding using distant mi-
crophones and omni-directional camera,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 20, no. 2, pp.
499–513, Feb. 2012.

[5] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in
speech recognition: Word error minimization and other appli-
cations of confusion networks,” Computer Speech and Lan-
guage, vol. 14, no. 4, pp. 373–400, Oct. 2000.

[6] E. Vincent, S. Watanabe, A.A. Nugraha, J. Barker, and
R. Marxer, “An analysis of environment, microphone and data
simulation mismatches in robust speech recognition,” Com-
puter Speech and Language, vol. 46, pp. 535–557, Nov. 2016.

[7] H. Erdogan, T. Hayashi, J.R. Hershey, T. Hori, C. Hori, W.-N.
Hsu, S. Kim, J.L. Roux, Z. Meng, and S. Watanabe, “Multi-
channel speech recognition: LSTMs all the way through,” in
Proc. of The 4th Intl. Workshop on Speech Processing in Ev-
eryday Environments (CHiME 2016), 2016.

[8] T.H. Dat, N.W.Z. Terence, S. Sivadas, L.T. Tuan, and T.A.
Dung, “The I2R system for CHiME-4 challenge,” in Proc.
of The 4th Intl. Workshop on Speech Processing in Everyday
Environments (CHiME 2016), 2016.

[9] J. Du, Y.-H. Tu, L. Sun, F. Ma, H.-K. Wang, J. Pan, C. Liu,
J.-D. Chen, and C.-H. Lee, “The USTC-iFlytek system for
CHiME-4 challenge,” in Proc. of The 4th Intl. Workshop on
Speech Processing in Everyday Environments (CHiME 2016),
2016.

[10] T. Menne, J. Heymann, A. Alexandridis, K. Irie, A. Zeyer,
M. Kitza, P. Golik, I. Kulikov, L. Drude, R. Schlüter,
H. Ney, R. Haeb-Umbach, and A. Mouchtaris, “The
RWTH/UPB/FORTH system combination for the 4th CHiME
challenge evaluation,” in Proc. of The 4th Intl. Workshop on
Speech Processing in Everyday Environments (CHiME 2016),
2016.

[11] J.D. Williams, “Exploiting the ASR N-Best by tracking mul-
tiple dialog state hypotheses,” in Proc. Interspeech, 2008, pp.
191–194.

[12] S. Young, M. Gašić, B. Thomson, and J.D. Williams,
“POMDP-based statistical spoken dialogue systems: A re-
view,” Proc. IEEE, vol. 101, no. 5, pp. 1160–1179, Nov. 2016.

[13] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khu-
danpur, “Recurrent neural network based language model,” in
Proc. Interspeech, 2010, pp. 1045–1048.

[14] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khu-
danpur, “Extensions of recurrent neural network language
model,” in Proc. ICASSP, 2011, pp. 5528–5531.

[15] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural net-
works for language modeling,” in Proc. Interspeech, 2012.

[16] Y. Tachioka and S. Watanabe, “A discriminative method for
recurrent neural network language models,” in Proc. ICASSP,
2015, pp. 5386–5389.

[17] T. Hori, C. Hori, S. Watanabe, and J.R. Hershey, “Minimum
word error training of long short-term memory recurrent neural
network language models for speech recognition,” in Proc.
ICASSP, 2016, pp. 5990–5994.

[18] B. Roark, M. Saraclar, and M. Collins, “Discriminative n-gram
language modeling,” Computer Speech and Language, vol. 21,
no. 2, pp. 373–392, Apr. 2007.

[19] F.J. Och, “Minimum error rate training in statistical machine
translation,” in Proc. ACL, 2003, pp. 160–167.

[20] M. Collins and T. Koo, “Discriminative reranking for natural
language parsing,” Computational Linguistics, vol. 31, no. 1,
pp. 25–70, Mar. 2005.

[21] T. Oba, T. Hori, A. Nakamura, and A. Ito, “Round-robin duel
discriminative language models,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 20, no. 4, pp. 1244–
1255, May 2012.

[22] D.E. Knuth, The Art of Computer Programming, Volume
3: Sorting and Searching, Second Edition, Addison-Wesley,
1998.

[23] I. Sutskever, O. Vinyals, and Q.V. Le, “Sequence to sequence
learning with neural networks,” in Proc. NIPS, 2014, pp. 3104–
3112.

[24] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio, “End-
to-end continuous speech recognition using attention-based re-
current NN: First results,” in Proc. Deep Learning and Repre-
sentation Learning Workshop: NIPS 2014, 2014.

[25] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and
spell: A neural network for large vocabulary conversational
speech recognition,” in Proc. ICASSP, 2016, pp. 4960–4964.

[26] K. Maekawa, “Corpus of spontaneous Japanese: its design
and evaluation,” in Proc. Workshop on Spontaneous Speech
Processing and Recognition (SSPR), 2003, pp. 7–12.

[27] Preferred Networks, “Chainer: A flexible framework for neural
networks,” https://chainer.org/.

[28] T. Yoshioka, K. Ohnishi, F. Fang, and T. Nakatani, “Noise
robust speech recognition using recent developments in neural
networks for computer vision,” in Proc. ICASSP, 2016, pp.
5730–5733.

[29] T. Hori, C. Hori, Y. Minami, and A. Nakamura, “Effi-
cient WFST-based one-pass decoding with on-the-fly hypothe-
sis rescoring in extremely large vocabulary continuous speech
recognition,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 15, no. 4, pp. 1352–1365, May 2007.

[30] A. Ogawa and T. Hori, “Error detection and accuracy estima-
tion in automatic speech recognition using deep bidirectional
recurrent neural networks,” Speech Communication, vol. 89,
pp. 70–83, May 2017.

[31] D.P. Kingma and J.L. Ba, “Adam: A method for stochastic
optimization,” in Proc. ICLR, 2015.

[32] G. Neubig, M. Morishita, and S. Nakamura, “Neural reranking
improves subjective quality of machine translation: NAIST at
WAT2015,” in Proc. WAT, 2015, pp. 35–41.

[33] J. Niehues, E. Cho, and A. Waibel T.-L. Ha, “Analyzing neural
MT search and model performance,” in Proc. The 1st Work-
shop on Neural Machine Translation, 2017, pp. 11–17.

6103

