
MODELING NON-LINGUISTIC CONTEXTUAL SIGNALS IN LSTM LANGUAGE MODELS
VIA DOMAIN ADAPTATION

Min Ma? Shankar Kumar† Fadi Biadsy† Michael Nirschl† Tomas Vykruta† Pedro Moreno†

? Graduate Center, The City University of New York, NY, USA mma@gradcenter.cuny.edu
† Google Inc., New York, NY, USA {shankarkumar, biadsy, mnirschl, tvykruta, pedro}@google.com

ABSTRACT

Language Models (LMs) for Automatic Speech Recognition (ASR)
can benefit from utilizing non-linguistic contextual signals in mod-
eling. Examples of these signals include the geographical location
of the user speaking to the system and/or the identity of the appli-
cation (app) being spoken to. In practice, the vast majority of in-
put speech queries typically lack annotations of such signals, which
poses a challenge to directly train domain-specific LMs. To obtain
robust domain LMs, generally an LM which has been pre-trained
on general data will be adapted to specific domains. We propose
four domain adaptation schemes to improve the domain performance
of Long Short-Term Memory (LSTM) LMs, by incorporating app
based contextual signals of voice search queries. We show that most
of our adaptation strategies are effective, reducing word perplexity
up to 21% relative to a fine-tuned baseline on a held-out domain-
specific development set. Initial experiments using a state-of-the-art
Italian ASR system show a 3% relative reduction in WER on top
of an unadapted 5-gram LM. In addition, human evaluations show
significant improvements on sub-domains from using app signals.

Index Terms— neural network based language models, lan-
guage model adaptation, domain adaptation, speech recognition

1. INTRODUCTION

Language models (LMs) play an essential role in automatic speech
recognition (ASR). In a two-pass ASR system, two language models
are typically used. The first is a heavily pruned n-gram model which
is used to build the decoder graph efficiently. Another larger or more
complex LM is employed to rescore hypotheses generated in the ini-
tial pass. In this paper, we focus on improving the second-pass LM.
Recently, neural network based language models (NNLMs) have
shown good performance in ASR [1, 2, 3]. An NNLM generally as-
signs a probability to a word w conditioned on the preceding words
without incorporating non-linguistic contextual signals. However,
contextual signals, such as application genre, geographical location
or time period associated with speech query, and personal prefer-
ence of speaker, contain rich information and may heavily influence
language modeling [1, 4, 5, 6]. We explore a variety of contextual-
signal based NNLM adaptation strategies for rescoring hypotheses
generated by an ASR system.

In the context of ASR for voice search queries associated with
a specific application (a.k.a. app), recognition hypotheses employ a
small subset of the recognizer vocabulary. For example, if a speech
query is sent from Android PlayStore1, it is more likely to contain a
name or version of some game, rather than terms about say, weather

1play.google.com/store

or food. If a language model can capture application-specific infor-
mation and target the next word within the domain, it is likely to
make more accurate predictions. Nevertheless, in many cases, such
signals are only available for a part of domain text but not for the
generic text used in training an LM [6, 7]. The solution we propose
to address the lack of contextual signals is to pre-train an LM on a
large generic corpus, then adapt it to the given manually transcribed
speech data whose app genre signals are available. We explore the
adaptation of LSTM LM for short speech queries. We show that inte-
grating contextual signals can help build powerful word-level LSTM
LMs even for short utterances.

Pre-training and fine-tuning [8] remain as popular choices for
domain adaptation of NNLMs [9, 6, 10]. However, deep neural net-
works are prone to catastrophically forgetting previous tasks [11].
We propose to categorize model parameters into general and domain
parameters and tune them in different phases, suggesting a possible
way to maintain the general performance of adapted LSTM LM.

2. PREVIOUS WORK

In [1], Mikolov and Zweig pointed out that feeding contextual sig-
nals as additional input to recurrent neural network (RNN) LMs is
preferable for domain adaptation as it avoids building many individ-
ual signal-specific submodels. They extended the basic RNN LM
with an additional contextual layer which was connected to both the
hidden layer and output layer. By providing topic vectors associ-
ated with each word as inputs to the contextual layer, they obtained
an 18% relative reduction in Word Error Rate (WER) on the Wall
Street Journal ASR task. Chen et al. [4] performed multi-genre RNN
LM adaptation by incorporating various topic representations as ad-
ditional input features, which outperformed RNN LMs that were
fine-tuned on genre-specific data. Experiments showed an 8% rel-
ative gain in perplexity and a small WER reduction compared to
unadapted RNN LMs on broadcast news. Deena et al. [12] extended
this work by incorporating a linear adaptation layer between the hid-
den layer and output layer, and only fine-tuning its weight matrix
when adapting. They reported a 10% relative reduction in perplexity
and a 2% relative reduction in WER, also on broadcast news.

Recently, Ghosh et al. [5] proposed an approach to use an em-
bedding for topic dynamics and add it element-wisely to the cal-
culation of gates and cell state of LSTM cells. Although the re-
duction of perplexity was small, the adapted LSTM LM showed a
21% relative improvement in accuracy for a sentence selection task
on Wikipedia and an 18% relative improvement on Google News.
Deena et al. [6] proposed four approaches to fine-tune RNN LMs
with domain-specific features, and concluded that adding a separate
weight matrix for the auxiliary features at the input layer gave the
best performance. They derived auxiliary features from a multi-layer

6094978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

perceptron regression between the hidden state vectors of RNN LM
and show-level LDA features. Their best adapted RNN LM showed
a 16% relative reduction in word perplexity and a 1.3% relative re-
duction of WER when interpolating with a 4-gram LM in the second-
pass to rescore 100-best lists.

3. DATA

We conduct all experiments on an Italian speech recognition task.
We use a large corpus of texts consisting of aggregated and anonymi-
zed typed documents (42%), unsupervised spoken hypotheses (45%)
and manually transcribed speech (13%), consisting of more than 260
million sentences (about 1.6 billion word tokens, no app signal an-
notations). We use the entire corpus as the training set of the back-
ground LM. A set of anonymized, unsupervised speech transcripts
is split into two independent sets sharing the same domain distri-
bution: domain adaptation set (i.e. the training data in adaptation
phase), which includes approximately 24 million sentences (about
110 million word tokens); domain development set, which is com-
posed of about 6.8 million sentences (about 31 million word tokens).
Each sentence of domain data is associated with an application label
(Maps, YouTube, or PlayStore). We evaluate perplexities on an in-
domain dev set and a held-out out-of-domain dev set, which contains
5.3 × 104 sentences (about 3.4 × 105 word tokens, no app annota-
tions)2. We report the WER results for the top performing adapted
LMs using a state-of-the-art ASR system on two dedicated ASR test
sets. The modeled vocabulary contains 100k words.

4. LONG SHORT-TERM MEMORY LANGUAGE MODEL

Our baseline model is an RNN LM with two LSTM layers, each
layer containing 1024 nodes. Each word is first represented by a
1-of-k encoding (all the out-of-vocabulary words are represented by
an <unk> token) and then mapped to a 1024-dimensional embed-
ding space. We train the LSTM LM with truncated back-propagation
through time (BPTT) algorithm [13] with an unrolling of 20 time
steps. Training loss is defined as the cross-entropy between pre-
dicted words and reference word labels. Mini-batch stochastic gra-
dient descent (SGD) [14] is used with an Adagrad optimizer [15] and
a batch size of 128 sequences. Learning rate of 0.2 is used. We found
it crucial to use gradient clipping on the LSTM gradients (clipping
L2-norm ≤ 1.0). In order to prevent models from overfitting, we
employ dropout regularization [16] (with a keep probability of 0.8)
to the input and output of the hidden layers for all LSTM LMs. We
found it helpful to multiply gradients of word embedding layer with
batch size, we apply this scaling to every model architecture unless
its word embedding layer is frozen (cf. Sec. 5.1). We implement
LSTM LM using augmented setting: we couple the input gate to 1.0
minus forget-gate to restrict the internal state of the LSTM cell to the
unit interval, as in [17]; A peephole connection [18] from its internal
cells to the gates in the same cell is used.

5. ADAPTATION APPROACHES

To better evaluate model performance, we set up three baselines
(cf. Table1): 1) OOD-DATA ONLY BASELINE: model trained only
on out-of-domain training data, without app signals. The trained
LSTM LM shows a perplexity of 82 on domain dev set, and 85 on

2The average number of words per sentence/utterance is 6.4 for training
set, 4.6 for adaptation set, 4.6 for domain development set and 6.4 for out-of-
domain development set.

out-of-domain dev set. 2) DOMAIN-DATA ONLY BASELINE: model
trained only on domain adaptation data, with app signals turned
off. Its domain perplexity is 49 while out-of-domain perplexity is
293, which suggests a big difference between out-of-domain and in-
domain data. 3) FINE-TUNING BASELINE: pre-train an LSTM LM
on general training data, then fine-tune it on adaptation data, with
app signals turned off. The adapted model reduces domain perplex-
ity from 82 to 47, indicating that we can gain 42.7% relative re-
duction of domain perplexity by switching training data. However,
its perplexity on out-of-domain dev set increased to 209, between
the perplexities of first two baselines. The pre-trained LMs in the
four approaches we propose are different, we compare their adapted
domain performance with the domain perplexity of FINE-TUNING
BASELINE.

5.1. Scheme I: Prepend App Id

Scheme I uses OOD-DATA ONLY BASELINE as background LM.
In the adaptation, we prepend the word sequence with the app id and
fine-tune the entire model. Intuitively, we assume initializing the
LSTM state with contextual app ids might place the model in a bet-
ter starting region, and proper embeddings of app ids will be learned
by back-propagation. A conceptually similar idea was employed for
image captioning using an RNN by Karpathy and Fei-Fei in [19],
where the RNN state is initialized by convolutions of object regions
in the image. As shown in Table 1, the scheme helps reduce do-
main perplexity to 39, which is 17.0% lower than the FINE-TUNING
BASELINE. The 17.0% relative reduction in perplexity was obtained
by only adding app signals.

In order to reduce the number of parameters to fine-tune, we ap-
ply a freezing technique [10] in the adaptation phase of Scheme I.
In brief, we freeze some layers of the model, i.e. we do not update
the weight matrices of the frozen layers when back-propagating. We
first freeze word embedding layer, aiming to leverage the learned
representation of words. This adaptation strategy is “Variant 1” of
Scheme I. Furthermore, we explore freezing both word embedding
and LSTM layers as the “Variant 2”. However, experiments show
that neither of the freezing variants outperforms standard adaptation
Scheme I in domain perplexity. It suggests when using “prepend”
strategy, the best domain adaptation requires fine-tuning the entire
model to adjust word embeddings and LSTM layers accordingly, al-
though it results in worse performance on out-of-domain data than
the freezing variants.

Table 1. Perplexity of the Baselines and Scheme I (DOM PPL, OOD
PPL refers to in-domain/out-of-domain perplexity. As OOD test re-
sults are noisy, a smoothing factor 0.6 is applied to raw values.).

Adaptation Strategy DOM PPL OOD PPL
OOD-Data Only Baseline 82 85
Domain-Data Only Baseline 49 293
Fine-tuning Baseline 47 209
Standard Scheme I 39 211
Variant 1: freeze wEmb 41 176
Variant 2: freeze wEmb, LSTMs 46 153

5.2. Scheme II: Concatenate Input Embeddings

We add a separate embedding layer to encode the app id associ-
ated with each word sequence, then concatenate app embedding with

6095

word embedding at each time step and feed them to the hidden lay-
ers. The app signals are represented using 8-dimensional dense vec-
tors. We feed zero vector as pseudo app signal for out-of-domain
data during pre-training in order to keep pre-training and adaptation
model architectures compatible. However, it is unlikely to learn use-
ful information from an all-zero app embedding. This leads to a
weaker background LM whose domain perplexity is 102.

In adaptation, we feed real app signals and fine-tune the entire
model. The adapted model reduces the domain perplexity from 102
to 47 (cf. Table 2). However, when compared to FINE-TUNING
BASELINE, feeding additional app signals by concatenation does not
yield any gain in term of domain perplexity. One possible reason is
that the background LM of “concat” scheme is much weaker than the
one of FINE-TUNING BASELINE, which might limit the best adap-
tation performance it could achieve. More importantly, feeding app
embedding along with every word might interfere with the LSTM
learning by forcing model to continually see redundant information.

Two freezing variants are explored for Scheme II: 1) freezing
word embedding layer reduces domain perplexity to 49, slightly
worse than standard Scheme II. 2) freezing word embedding and
LSTM layers yields even higher domain perplexity of 64. These
results indicate that given the concatenation of word and app em-
beddings as input, it is hard to adapt well by only updating softmax
output layer (and LSTM layers) of the model. We observe better
out-of-domain performance of Scheme II than its freezing variants.

Table 2. Domain and out-of-domain perplexity of Scheme II.

Adaptation Strategy DOM PPL OOD PPL
Background LM (pseudo app) 102 1355
Standard Scheme II 47 163
Variant 1: freeze wEmb 49 249
Variant 2: freeze wEmb, LSTMs 64 332

5.3. Scheme III: Add Meta-Memory To LSTMs

We apply an affine transformation to app embedding when feeding it
to LSTM cells, attempting to provide a persistent memory for each
word sequence. We revise the formulae of LSTM from [17] to:

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf +Wfaa+ baf)

it = 1− ft
ĉt = tanh(Wcxxt +Wchht−1 + bc +Wcaa+ bac)

ct = ft � ct−1 + it � ĉt
ot = σ(Woxxt +Wohht−1 +Wocct + bo +Woaa+ bao)

ht = ot � tanh(ct)

where� refers to the element-wise product. The bold terms in equa-
tions indicate the affine transformation of app signals for domain
data. These additional terms encode hidden topic information which
word distribution might condition on, we call them “meta-memory”.
In pre-training, app embedding a is set to all-zero vector, and all
new bias terms are initialized to random values close to zero. The
domain perplexity is 83 for background LM, almost equal to OOD-
DATA BASELINE. In the adaptation, real app embedding is fed and
the entire model is fine-tuned. Scheme III achieved the best adapted
domain perplexity of 37, which is 21.3% lower than FINE-TUNING
BASELINE. However, its OOD perplexity of 602 is much higher.

To simplify Scheme III, we only incorporate meta-memory into
the calculation of cell state candidate (i.e. ĉt) for next time step t,

not in the computation of the forget and output gates. We call this
strategy “CandOnly Variant”. It reduces domain perplexity to 39,
slightly worse than 37 achieved by standard Scheme III. But the vari-
ant only fine-tunes a third of the number of parameters compared to
Scheme III, and its out-of-domain perplexity of 276 is lower. We
exploit various freezing settings for both adaptation strategies: 1)
freeze word embedding layer only; 2) freeze word embedding layer,
and the app-irrelevant weights and biases in LSTM cells (denoted as
“LSTMs∗” parameters). As shown in Table 3, freezing helps curb
the model from shifting excessively towards domain data, resulting
in lower out-of-domain perplexity but higher in-domain perplexity.

Table 3. Domain and out-of-domain Perplexity of Scheme III.

Adaptation Strategy DOM PPL OOD PPL
Background LM (Scheme III) 83 84
Standard Scheme III 37 602
Scheme III: freeze wEmb 41 176
Scheme III: freeze wEmb, LSTMs∗ 44 139
Background LM (CandOnly) 83 84
CandOnly Variant of Scheme III 39 276
CandOnly: freeze wEmb 48 177
CandOnly: freeze wEmb, LSTMs∗ 51 123

5.4. Scheme IV: Dual Paths To Softmax Output Layer

In the context of an ASR system, an adapted LM is expected to per-
form better on domain data, and maintain its performance on general
(out-of-domain) data. However, perplexity evaluation shows that all
the above schemes have moved the models too much towards do-
main data by fine-tuning most parameters, ending with reduced do-
main perplexity but increased out-of-domain perplexity. We note all
these schemes feed app contextual signals to the layers below the
softmax output layer. Hence in the adaptation, the entire model has
to update to optimize cross-entropy on domain data. Upon comple-
tion of fine-tuning, adapted model tends to forget its knowledge of
out-of-domain data learned in pre-training stage (i.e. catastrophic
forgetting [11]). Freezing lower layers helps control out-of-domain
perplexity to some extent but is not able to yield better adapted do-
main perplexity.

Inspired by Biadsy et al. [7], we categorize parameters into two
subsets: one for out-of-domain data, another for in-domain data. As
our domain adaptation data is only 9% as large as out-of-domain
training data, two problems will be introduced if we train the param-
eters jointly: in pre-training, there are no useful contextual signals to
train domain parameters, which will lead to a weak background LM;
more importantly, during adaptation, we actually prefer to keep the
out-of-domain parameters to retain the performance on general data.
We choose to tune the two types of parameters in different phases.

We start with pre-training an LSTM LM whose softmax output
layer contains two kinds of parameters:

P (wt|hist) =

{
φ(WOODht + bOOD) Pre-training
φ(WOODht + bOOD +WDht

′ + bD) Adaptation

whereWOOD and bOOD stand for out-of-domain weights and biases
of softmax layer, WD and bD for the domain ones. To preserve the
knowledge learned from pre-training during adaptation, the out-of-
domain parameters of the softmax layer and the layers below (i.e. the
LSTM and word embedding layers, denoted as “LSTM path”) will
be frozen. In pre-training, only the LSTM path is used and all the

6096

out-of-domain parameters will be learned, while the domain param-
eters of output layer are initialized to zero and not updated. In the
adaptation, we add a separate embedding layer to encode app signal,
cascaded by a 1024-node neural network adaptation layer to con-
nect to the same output layer (they form a “DNNadapt path”). We
choose DNN rather than LSTM as adaptation layer as the app sig-
nal is not sequential. The word sequences are passed through the
frozen LSTM path and the app signals are fed to the DNNadapt path
separately. Domain parameters are learned on adaptation data. The
outputs of two paths, ht and ht

′ are combined at the softmax layer
to make a final prediction of next word. This adaptation approach is
“Scheme IV” (“dual paths”). Experiments (cf. Table 4) showed the
adapted LSTM LM does maintain OOD perplexity of 85, just as its
background LM, while reducing DOM perplexity to 75 (8.5% rel.).

The adapted domain perplexity of 75 is not as good as 47 ob-
tained by the FINE-TUNING BASELINE, indicating only fine-tuning
domain parameters of output layer and DNN path is not sufficient to
obtain best domain perplexity. We then relax the freezing constraints
to also tune OOD parameters of output layer, but at a slower pace by
multiplying a factor of 0.25, 0.50, or 0.75. We note all the “LSTM
path” is still frozen to prevent the model shifting excessively towards
domain data. Fine-tuning OOD softmax parameters without penalty
(equivalent to “mul 1.00”) achieves the best domain perplexity of
51, but its OOD perplexity rises to 133. The performance reflect a
trade-off between in-domain and out-of-domain perplexity.

Table 4. Domain and out-of-domain perplexity of Scheme IV.

Adaptation Strategy DOM PPL OOD PPL
Background LM (OOD Baseline) 82 85
Standard Scheme IV 75 85
Variant: mul 0.25 62 132
Variant: mul 0.50 61 152
Variant: mul 0.75 60 152
Variant: no penalty 51 133

6. EXPERIMENTAL RESULTS

6.1. ASR Experiment Results

Based on perplexity results, we select the top adapted LSTM LMs
for the second-pass rescoring of a state-of-the-art Italian LVCSR sys-
tem. The system employs a multi-pass rescoring framework: an un-
adapted Katz smoothed 5-gram LM is used for first-pass scoring, the
first-pass lattice is rescored by adapted LSTM LM using the push-
forward algorithm [20]. We linearly interpolate the two LMs using
an interpolation weight of 0.5. We report performance on a short
message dictation ASR task, with a domain WER baseline 13.2%
and a general WER baseline of 12.9% (cf. Table 5). We find that
fine-tuning pre-trained LSTM LM without app signals reduces do-
main WER from 13.2% to 12.9%; further reduction to 12.8% is
achieved when incorporating app signals by prepending the word
sequence with the app id (Scheme I). For the best adaptation strat-
egy (Scheme I), we add 13 million random general utterances from
the training set to the domain adaptation set (i.e. a mixed adapta-
tion set with 35% out-of-domain data). But it did not change the
WER numbers, indicating that the “prepend” strategy is effective for
addressing both general and domain data, thus it is not necessary
to keep general data in the adaptation set. All adaptation strategies
achieve lower domain WER relative to OOD-DATA BASELINE of

13.2%, demonstrating that the integration of app signals does adapt
LSTM LM to specific domains. Adapted LSTM LMs maintain or
slightly increase general WER.

Table 5. WER (%) of ASR system based on test sets. General WER:
evaluated on 8k test utterances (31% are domain data); Domain
WER: evaluated on all the 3,015 utterances domain data only.

Language Model General WER Domain WER
OOD-Data Only Baseline 12.9 13.2
Domain Data Only Baseline 13.4 13.2
Fine-tuning Baseline 12.9 12.9
Scheme I (prepend) 12.9 12.8
Scheme I: mixed data 12.9 12.8
Scheme II (concat) 13.0 12.9
Scheme III (meta-memory) 13.0 12.9
Scheme IV (dual paths) 13.0 12.9
Scheme IV: no penalty 12.9 13.0

6.2. SxS Experiment Results

To comprehensively evaluate our domain modeling approach, we
run ”side-by-side” (SxS) experiments [7], in which each anonymized
test utterance is automatically transcribed by two ASR systems
(FINE-TUNING BASELINE vs. Scheme I). If the two transcripts
differ, they will be presented to human raters. SxS experiments can
accurately measure semantic changes as opposed to minor lexical
differences. We conduct SxS experiments for each specific app
domain, where we focus only on the fraction of the traffic affected
by adapting to that domain. We present the following results: 1)
Change: the percentage of utterances for which the two systems
produced different transcripts. 2) Wins/Losses: the ratio of wins to
losses in the experimental system vs. the baseline. 3) p-value, which
is observed statistically significant (p-value < 5.0%) for PlayStore
and Maps, possibly because of the restrictive vocabularies in these
domains. In future work, we will conduct SxS experiments on both
in-domain and out-of-domain utterances to check if our adaptation
scheme preserves the performance on both types of data.

Table 6. SxS results for three app domains.
Task Win/Loss % Change p-value
PlayStore 58/36 2.4 0.1%-0.5%
Maps 82/49 0.9 1.0%-2.0%
YouTube 38/27 2.4 5.0%-10.0%

7. CONCLUSIONS AND FUTURE WORK

We demonstrate that an LSTM LM with contextual signals can ob-
tain a 21% relative reduction in domain perplexity and a 3% relative
reduction in WER on top of an unadapted 5-gram LM. Our SxS ex-
periments show significant improvements on sub-domains from us-
ing app signals that provide complementary strength. Grouping the
model parameters into two sets with freezing suggests a possible so-
lution to obtain good performance on both in-domain and general
data. In the future, we would like to further explore how to inte-
grate multiple contextual signals (e.g. location or time/date) from
overlapping domains (e.g. clustering) and generate more compact
adaptation models (e.g. embedding tying [21]).

6097

8. REFERENCES

[1] Tomas Mikolov and Geoffrey Zweig, “Context dependent re-
current neural network language model,” SLT, vol. 12, pp. 234–
239, 2012.

[2] Ebru Arisoy, Tara N Sainath, Brian Kingsbury, and Bhuvana
Ramabhadran, “Deep neural network language models,” in
Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever
Really Replace the N-gram Model? On the Future of Language
Modeling for HLT. Association for Computational Linguistics,
2012, pp. 20–28.

[3] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney,
“LSTM neural networks for language modeling,” in Inter-
speech, 2012, pp. 194–197.

[4] Xie Chen, Tian Tan, Xunying Liu, Pierre Lanchantin, Moquan
Wan, Mark JF Gales, and Philip C Woodland, “Recurrent neu-
ral network language model adaptation for multi-genre broad-
cast speech recognition,” in Proceedings of InterSpeech, 2015.

[5] Shalini Ghosh, Oriol Vinyals, Brian Strope, Scott Roy, Tom
Dean, and Larry Heck, “Contextual LSTM (CLSTM) models
for large scale NLP tasks,” arXiv preprint arXiv:1602.06291,
2016.

[6] Salil Deena, Raymond W. M. Ng, Pranava Madhyastha, Lu-
cia Specia, and Thomas Hain, “Semi-supervised adaptation of
rnnlms by fine-tuning with domain-specific auxiliary features,”
in Proceedings of the INTERSPEECH. 2017, ISCA.

[7] Fadi Biadsy, Mohammadreza Ghodsi, and Diamantino Ca-
seiro, “Effectively building tera scale maxent language models
incorporating non-linguistic signals,” in Proceedings of the IN-
TERSPEECH. 2017, ISCA.

[8] Geoffrey E Hinton and Ruslan R Salakhutdinov, “Reducing
the dimensionality of data with neural networks,” science, vol.
313, no. 5786, pp. 504–507, 2006.

[9] Junho Park, Xunying Liu, Mark JF Gales, and Phil C Wood-
land, “Improved neural network based language modelling
and adaptation,” in Eleventh Annual Conference of the Inter-
national Speech Communication Association, 2010.

[10] Min Ma, Michael Nirschl, Fadi Biadsy, and Shankar Kumar,
“Approaches for neural-network language model adaptation,”
in Proceedings of the INTERSPEECH. 2017, ISCA.

[11] Michael McCloskey and Neal J Cohen, “Catastrophic interfer-
ence in connectionist networks: The sequential learning prob-
lem,” Psychology of learning and motivation, vol. 24, pp. 109–
165, 1989.

[12] Salil Deena, Madina Hasan, Mortaza Doulaty, Oscar Saz, and
Thomas Hain, “Combining feature and model-based adapta-
tion of RNNLMs for multi-genre broadcast speech recogni-
tion,” in INTERSPEECH, 2016, pp. 2343–2347.

[13] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams,
et al., “Learning representations by back-propagating errors,”
Cognitive modeling, vol. 5, no. 3, pp. 1, 1988.

[14] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola,
“Efficient mini-batch training for stochastic optimization,” in
Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining. ACM, 2014,
pp. 661–670.

[15] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive subgra-
dient methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, no. Jul, pp.
2121–2159, 2011.

[16] Vu Pham, Théodore Bluche, Christopher Kermorvant, and
Jérôme Louradour, “Dropout improves recurrent neural net-
works for handwriting recognition,” in Frontiers in Handwrit-
ing Recognition (ICFHR), 2014 14th International Conference
on. IEEE, 2014, pp. 285–290.

[17] Haşim Sak, Andrew Senior, and Françoise Beaufays, “Long
short-term memory recurrent neural network architectures for
large scale acoustic modeling,” in Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

[18] Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Ste-
unebrink, and Jürgen Schmidhuber, “LSTM: A search space
odyssey,” IEEE transactions on neural networks and learning
systems, 2016.

[19] Andrej Karpathy and Li Fei-Fei, “Deep visual-semantic align-
ments for generating image descriptions,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2015, pp. 3128–3137.

[20] Shankar Kumar, Michael Nirschl, Daniel Holtmann-Rice,
Hank Liao, Ananda Theertha Suresh, and Felix Yu, “Lat-
tice rescoring strategies for long short-term memory language
models in speech recognition,” in Automatic Speech Recog-
nition and Understanding (ASRU), 2017 IEEE Workshop on.
IEEE, 2017.

[21] Ofir Press and Lior Wolf, “Using the output embedding to
improve language models,” arXiv preprint arXiv:1608.05859,
2016.

6098

