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ABSTRACT

Recurrent neural networks have become increasingly popular for the
task of language modeling achieving impressive gains in state-of-
the-art speech recognition and natural language processing (NLP)
tasks. Recurrent models exploit word dependencies over a much
longer context window (as retained by the history states) than what
is feasible with n-gram language models. However the training crite-
rion of choice for recurrent language models continues to be the local
conditional likelihood of generating the current word given the (pos-
sibly long) word context, thus making local decisions at each word.
This locally-conditional design fundamentally limits the ability of
the model in exploiting whole sentence structures. In this paper, we
present our initial results at whole sentence neural language models
which assign a probability to the entire word sequence. We extend
the previous work on whole sentence maximum entropy models to
recurrent language models while using Noise Contrastive Estimation
(NCE) for training, as these sentence models are fundamentally un-
normalizable. We present results on a range of tasks: from sequence
identification tasks such as, palindrome detection to large vocabulary
automatic speech recognition (LVCSR) and demonstrate the model-
ing power of this approach.

Index Terms— Whole-sentence language models, Unnormal-
ized models, Recurrent neural network

1. INTRODUCTION

Most statistical language models (LMs) including n-gram LM and
standard recurrent neural network LMs are conditional models, that
estimate the probability of a word given the previous word sequence.
The probability of a sentence s of T words w1, w2, . . . , wT is cal-
culated as the product of word probabilities by using the chain rule,

p(s) = p(w1, · · · , wT ) =
T∏
t=1

p(wt|ht) (1)

where ht = w1, ..., wt−1 is the history of word wt. This history
is often truncated to the previous n − 1 words since long histories
are rarely observed in the training data. This includes, for exam-
ple, n-gram LMs and feed-forward neural network LMs. n-gram
LMs estimate the conditional probability of the next word given the
history using counts computed from the training data. On the other
hand, feed-forward neural network LMs embed the history into a
continuous space and use a neural network to estimate this condi-
tional probability. A key drawback of conditional LMs is that the
captured context is dependent on the length of the history, which is
usually very limited, often less than five words.

1.1. RNN/LSTM language models

Recently, recurrent neural network (RNN) LMs have become popu-
lar due to their ability to capture longer word histories than n-gram
based LMs [1]. A RNN can be thought of as a feed-forward neural
network that is cloned across time with the hidden state at time step
(t− 1) concatenated with the embedding of the word wt to form the
input that predicts the next word wt+1. Hence, the conditional like-
lihood of wt+1 is influenced by the hidden states at all previous time
steps 1, . . . , t, thus capturing a very long context. In practice, the
history is truncated to the previous 15-20 words in order to speed-up
training and decoding.

Often, RNN’s use a long short-term memory (LSTM) [2] cell
instead of simple sigmoidal hidden neurons. The LSTM is able to
capture even longer temporal contexts without suffering from the
exploding or vanishing gradient problems prevalent in RNNs. De-
spite the ability of RNNs to capture much longer temporal context as
compared to n-gram LMs or feed-forward neural networks, they still
use the chain rule to estimate the probability of the entire sentence.
This locally-conditional design fundamentally limits the ability of
the model in exploiting whole sentence structures [3]. In this paper
we explore whole sentence recurrent language models which are free
from the locally-conditional constraints.

1.2. Whole Sentence Language Models

Unlike locally-conditional language models, whole sentence mod-
els directly model the probability of a sentence or a utterance. [4]
introduced whole sentence maximum entropy language models. As
shown in a follow-up paper [5], the model illustrates great capability
in integrating any computable property of sentences. It is conceptu-
ally simple and straightforward to use in applications.

In this paper, we extend the concept of whole-sentence models
to recurrent neural network LMs, starting with a review of related
work in section 2. In section 3, we give a detailed description of
the neural network architectures that we have explored. Section 4
presents training methods used in this paper. Similar to [5], we ap-
ply noise-contrastive estimation (NCE), a sampling-based method
to train an unnormalized model. In Section 5, we present results on
several tasks, ranging from simple sequence identification tasks to
speech recognition. We summarize our findings in section 6.

2. RELATED WORK

Whole sentence maximum entropy models were first proposed in [4]
and later improved upon in [5]. These models allowed the flexibility
of having custom sentence-level features such as length of sentence
which are hard to model via locally-conditional language models [3].
Our work in this paper can be seen as an extension of these models
to neural net language models with some modifications such as the
use of Noise Contrastive Estimation for unnormalized joint density
estimation and not relying heavily on custom sentence-level features.
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The idea of sentence-level neural net models has been explored
in recent work on sentence classification [6] and on the construc-
tion of sentence embeddings [7] [8]. Sentence embedding methods
aim to project sentences into a fixed-dimensional vector space where
sentences that are semantically-related are close to each other. Re-
cently, [9] proposed general-purpose, paraphrastic sentence embed-
dings by starting with standard word embeddings and constructing
sentence embeddings by training a simple word averaging model.

Sentence classification which assign a sentence to a class label,
for example, positive or negative review on movies [10] are also
conditional models, whereas our focus in this paper is to assign a
probability to each sentence. The proposed whole sentence neural
model therefore aims to assign higher scores to sentences that are
more likely to occur in the domain of interest.

An alternative task-based approach to whole sentence modeling
is Discriminative Language Models (DLM) for ASR [11] [12] and
machine translation (MT) [13]. Discriminative language models do
not attempt to estimate a generative model over strings. Instead,
they are trained on the output of the ASR or the MT system with the
ground truth, in an attempt to directly optimize WER or BLEU score
respectively. Thus DLMs cannot be trained on just textual training
data but required matched speech data and transcriptions for ASR
and aligned bilingual data for MT.

3. WHOLE SENTENCE NEURAL MODELS

In this paper, we focus on training a language model which predicts
the probability of a sentence p(s) directly without computing condi-
tional probabilities for each word in the sentence independently. We
focus on using recurrent LSTM models in this paper as the neural ar-
chitecture of choice. It should be noted that the proposed approach
is flexible and can be extended to other architectures such as con-
volutional neural networks easily. We present two simple LSTM
architectures that provided good empirical results.

In the first network shown in Figure 1a, the representation vector
of a sentence is generated from a one-layer, uni-directional LSTM
followed by mean-pooling over the hidden states at each time step.
The second network shown in Figure 1b is a one-layer bidirectional
LSTM. We stack the hidden representations of the last state in each
direction to form the sentence embedding. In both networks, a fully-
connected linear layer is added to the LSTM layer to obtain the final
score of the sentence. Note that in contrast to typical word LSTM
language models,

• Our model does not require any softmax computation to com-
pute conditional probabilities of individual words.

• The model generates a single output score for the whole sen-
tence which we treat as an un-normalized probability.

Given the fundamentally un-normalized nature of the model, we
need a sampling-based approach to estimate model parameters.
While prior work on whole sentence maximum entropy models [5]
used importance sampling to estimate model parameters, we use
noise contrastive estimation (NCE) [14], which has been shown to
be an effective technique to speed-up training of neural language
models [15]. In the next section 4, we will delve into the details of
how we use NCE for training the whole sentence neural language
model.

(a) LSTM (b) BiLSTM

Fig. 1: Recurrent Neural Network architectures explored in this pa-
per.

4. TRAINING OF WHOLE SENTENCE MODELS

4.1. Noise Contrastive Estimation

Noise contrastive estimation (NCE) was first introduced as a
sampling-based approach for unnormalized training [14] of statisti-
cal models. Rather than maximizing the likelihood of the training
data, a number of noise samples are generated for each training
sample. Subsequently, the parameters of the model are trained to
maximize the likelihood of a binary prediction task that identifies the
ground truth from the noise samples. In other words, NCE performs
a nonlinear logistic regression to discriminate between the observed
training data (ground truth) and artificially-generated noise data.

Mathematically, let X = (x1, x2, . . . , xS) be the S sentences
in training data. We denote by Y = (y1, y2, . . . , yνS) the ν ∗ S
samples that are drawn from a noise sampler model with probability
density of pn(·), where ν > 1. We also denote the density estimate
of the model by pm(·; θ). Then the NCE loss is defined as

l(θ) =
S∑
i=1

ln[h(xi; θ)] +
νS∑
i=1

ln[1− h(yi; θ)] (2)

where

h[u; θ] =
1

1 + ν exp (−G(u; θ))

and G(u; θ) is the log-odds ratio between pm(·; θ) and pn(·), i.e.
G(u; θ) = ln pm(u; θ)− ln pn(u). By optimizing the loss function
(2) with model parameters θ, it can be shown that the model pm
learns the probability density of X in the limit [14].

NCE has been used extensively for improving the scalability
of conditional recurrent neural network based language models by
speeding-up the expensive computation of the normalization term
(softmax function) in the output layer [15, 16, 17, 18]. During NCE-
based training of neural network language models, only the connec-
tions associated with a few words in the output layer need to be con-
sidered, thereby eliminating the need to compute the normalization
over the full output vocabulary. As noted in [18], NCE implicitly
constrains the variance of the normalization term to be very small
during training, which make it feasible to use these unnormalized
probabilities during testing. With sufficient number of noise sam-
ples the solution to the binary prediction model converges to the
maximum likelihood estimate on the training data. A modified NCE
algorithm using negative sampling was proposed in [19] to learn ac-
curate representations of frequent words and phrases.
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We adapt NCE to whole sentence models by sampling entire
sentences from a noise model as opposed to word samples used for
speeding-up the softmax computation. This makes the sampling pro-
cess more complex, as we discuss in detail in the next subsection.
Another important distinction from the conditional case is that the
true data and noise samples do not share the same context represen-
tations. This implies that the entire model and not just the final layer
output needs to be recomputed for the noise samples.

4.2. Sampling for NCE

In this paper, we use back-off n-gram language models built on the
training data as noise samplers. Noise samples were drawn in the
following two ways:
• Sampling Type-I: We generated word sequences using the

noise sampler model, such as, an n-gram or LSTM language
model.

• Sampling Type-II: We first randomly select one sentence
from the training data, and then randomly select N positions
to introduce an insertion, substitution, or deletion error in that
sentence. This process can be viewed as sampling from an
edit transducer [20]. The probability of a word to be inserted
or substituted with is assigned by the noise sampler model
based on the n-gram history at the position being consid-
ered. We ensured that each resulting noisy sentence has an
edit distance of at most N words from the original sentence.
We assigned a score to each sentence from the noise sampler
model, where the score is simply the sum of all n-gram scores
in the sentence. Note that using the score directly from the
noise sampler instead of computing it using a word-to-word
transduction [20] model is an approximation, which we found
to work well in practice.

Sampling Type-I is theoretically-correct to get the right NCE
loss. However, one of the drawbacks of generating sentences from
the n-gram model is that n-gram models almost always prefer
shorter sentences. Hence, it would be hard to cover the noise
space and this would reduce generalization over the kinds of er-
rors typically encountered in speech recognition tasks. Hence, we
also experimented with Sampling Type-II for certain types of large
vocabulary, spontaneous speech recognition tasks (Section 5.2).

5. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the various tasks against which the whole
sentence language model described in Section 3 is evaluated.

5.1. Sequence Identification tasks

5.1.1. Data sets

The first set of tasks we considered were tasks in which we explored
the ability of the model to fit sentences that are based on algorithmic
string generation or on a grammar. While these tasks appear to be
hand-picked, they help us to validate our idea that the whole sentence
model can detect patterns which rely on the entirety of a sentence and
may be hard to capture in a locally-conditional model. The tasks that
we investigate are:
• Palindrome detection (PAL). We generated a 1M word corpus

of palindromes from a 10-word vocabulary . Each sentence
in the corpus contains 10 words. Examples include sentences
such as, The cat ran fast ran cat the, one five six nine six five
one, etc.

• Lexicographically-ordered words (SORT): We generated a
1M words corpus from a 15-word vocabulary. Each sentence
is of length of 10 words and contains words in lexicographi-
cally sorted order i.e for a sentence w1...wn, for all words if
i < j then wi < wj in the lexicographic sense.

• Expressing dates (DATE): We generated a 7M words corpus
from a vocabulary of 70 words enumerating various ways to
express a date, such as, January first nineteen oh one.

The network configuration presented in Fig. 1b is used to train
the whole sentence model for these tasks. The BILSTM has an
embedding size of 200 with 700 hidden units. The noise samples
are generated by a 4-gram model and noise sampling allowing for
one edit (substitution) in the noisy sample sentence. The model was
trained using stochastic gradient descent and the NCE loss function
with a mini-batch size of 512. For every epoch, we generated a set of
20 noise samples per data point. The learning rate was adjusted using
the annealing strategy originally described in [21] where the learn-
ing rate was halved if the heldout loss was worse than the previous
iteration. The model converged after roughly 8 to 10 iterations.

5.1.2. Results

For each of the sequence identification tasks, 10% of the generated
data was used as the test set and excluded from training. Imposter
sentences were generated by substituting one word in any position in
the true samples in the test set. The accuracy of the model is evalu-
ated on its ability to classify the true sentences from their imposters.

The trained whole sentence model assigns a score to each sen-
tence in the test set. A simple linear classifier on these scores assigns
the sentence to one of the two classes. The performance of the model
is evaluated by measuring its classification accuracy. Surprisingly,
for all three tasks, its accuracy on an average is above 99%. This im-
plies that the model is able to differentiate between sequences that
fit the algorithmic pattern and the imposters. However, it should be
noted that there is an inherent structure to these grammar-like tasks
in contrast to free-form text, which makes it easy for the model to
learn a structure.

We take a close look at the DATE test set to see how the model
performs compared with a general n-gram model. Based on the true
samples (REF) in test set, we generate 4 types of noise samples, by
substituting (SUB), inserting (INS) or deleting (DEL) one word at
any position from the test utterance. The fourth noise sample is gen-
erated by the n-gram model (RAND). One set of reference and noise
samples is given in Table 1. The classification error rate of the 4-
gram model and the sentence model are presented in Table 2. While
it is expected that the n-gram model will have a relatively high error
rate when the noise samples are generated by itself (RAND), the sen-
tence model achieves significantly better performance. We hypoth-
esize that this is because the sentence model does not make condi-
tional independence assumptions inherent in the locally-conditional
models.

Table 1: Example sentences from the DATE test set

REF July the twentieth nineteen seventy nine
SUB July twenty twentieth nineteen seventy nine
INS July the twentieth nineteen ninety seventy nine
DEL July the twentieth * seventy nine

RAND July the twenty seventh of September two thou-
sand eighteen
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Table 2: Classification error rate (%)

4-gram sentence model
REF 0.03 0.00
SUB 0.73 0.04
INS 0.01 0.00
DEL 2.22 0.00
RAND 22.70 0.40

5.2. Large Vocabulary Speech recognition

Next, we evaluate the modeling power of the whole sentence model
on two speech recognition tasks. In most speech recognition sys-
tems, the decoder can generate alternate hypotheses (N-best lists)
from lattices during a first recognition pass. These N-best lists are
normally rescored by a complex neural network language model
such as an RNN or LSTM to find the best scoring path in the N-
best lists. We present results by rescoring 100 N-best lists with the
whole sentence model on two speech recognition tasks.

• Conversational Interaction (CI): This is a task seen in spo-
ken language systems with utterances comprising of digits
and alphabets in insolation, command phrases and short di-
alogs. The acoustic model was trained on 3600 hours of au-
dio data consisting of clean and noisy utterances from public
corpora such as, broadcast news, Mixer 6 [22], the AMI meet-
ing corpus [23] and in-house, conversational interaction data.
This corpora is further augmented with realistic environmen-
tal noises from the JEIDA corpus [24] and impulse responses
from RWCP [25] at various SNRs between 5 to 20 dB to total
3600 hours. The decoder used a vocabulary of 275K and a
word 4-gram LM with 150M ngrams (Perplexity:72.12). The
baseline one-best word error rate of this system is 8.5%. The
test set is of duration 1.5 hours consisting of accented data
(∼10 accents) covering spoken interaction in concierge and
other similar application domains.

• Conversational telephony speech transcription (SWB): This
task is the well-benchmarked Hub5-2000 testset from the
NIST Hub5 2000 evaluation. The N-best lists for this task
were generated by a state-of-the-art system described in [26].
The acoustic model consists of a score fusion of a bidi-
rectional LSTMs and a convolutional residual net (ResNet)
models trained on 2000 hours. The decoder used a vocabulary
of 85K and a word 4-gram LM with 24M words (perplexity
= 101). The test set is 2.5 hours in duration. The baseline
one-best word error rate of this system is 6.9%.

The baselines used for both tasks are state-of-the-art and are very
strong baselines to improve upon.

Whole sentence model configuration: For the SWB task, the
whole sentence LM is trained on only the transcripts of the train-
ing data, i.e. 24M words. For the CI task, the model was trained
on even less data, approximately 50 hours of conversation totalling
440K words. The network presented in 1a is used with a size of 512
for both projection and hidden layer on SWB task, 265 on CI. Noise
samples were drawn from a bigram language model.

Given the spontaneous style of the SWB task, we explored noise
samples drawn from 1-edit up to 3-edit to allow for enough diversity.
From the results presented in Table 3, it can be seen that the full
sentence model can provide gains over a word-LSTM trained on the
the same data as the baseline LM [26]. When the N-best lists are
rescored with a word-LSTM, the SWB task improves by 0.5, while

there is no improvement on the CI task. However, modeling the
whole sentence seems to buy modest gains on both tasks, suggesting
that model has indeed captured longer context than a simple word
LM. We present a few examples in Table 4 from both tasks. It can be
seen that the sentence model is able to capture sufficient long-term
context and correct few errors that could make a bigger difference to
downstream natural language processing applications.

Table 3: Word Error Rate (%) on SWB and Conversational Interac-
tion task

SWB CI
n-gram 6.9 8.5
+ word LSTM 6.5 8.5
+ sentence model 6.3 8.3

Table 4: Examples from the SWB and CI tasks illustrating the type
of errors recoverable by the proposed sentence LM model (Errors
are marked in red)

SWB
Ref actually we were looking at the saturn S L two
n-gram actually we were looking at the saturday I sell

to
word LSTM actually we were looking at the saturday S L too
Sentence LM actually we were looking at the saturn S L too

CI
Ref what are the famous attractions near here
n-gram and
word LSTM

what are the famous attraction is near here

Sentence LM what are the famous attractions near here
Ref could you send some soda to room three four

five
n-gram and
word LSTM

could you send some sort of to room three four
five

Sentence LM could you send some soda to room three four
five

6. SUMMARY

In this paper, we present our initial results at whole sentence neu-
ral language models building upon prior work on whole sentence
maximum entropy models. These models estimate the probability
of the entire word sequence directly without partial computations of
individual word likelihoods. To avoid normalizing over the whole
sentence space, we apply NCE for training our recurrent models.
Results are presented on a range of tasks: from sequence identifi-
cation tasks such as, palindrome detection to large vocabulary au-
tomatic speech recognition (LVCSR) and conversational interaction.
We demonstrate the modeling power of this approach. On these pre-
liminary experiments, the modest gains over state-of-the-art base-
lines suggest that the recurrent neural network has the ability to bet-
ter model full sentences.
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