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ABSTRACT

We present a new architecture and a training strategy for an
adaptive mixture of experts with applications to domain ro-
bust language modeling. The proposed model is designed to
benefit from the scenario where the training data are available
in diverse domains as is the case for YouTube speech recog-
nition. The two core components of our model are an ensem-
ble of parallel long short-term memory (LSTM) expert lay-
ers for each domain and another LSTM based network which
generates state dependent mixture weights for combining ex-
pert LSTM states by linear interpolation. The resulting model
is a recurrent adaptive mixture model (RADMM) of domain
experts. We train our model on 4.4B words from YouTube
speech recognition data. We report results on the YouTube
speech recognition test set. Compared with a background
LSTM model, we obtain up to 12% relative improvement in
perplexity and an improvement in word error rate from 12.3%
to 12.1% while using a lattice rescoring with strong pruning.

Index Terms— language modeling, neural networks,
speech recognition, mixture of experts, domain adaptation

1. INTRODUCTION

The application of recurrent neural networks for language
modeling [1] has been a subject of intensive research this
decade. These works cover most of the topics relevant for
language modeling in speech recognition, including a number
of efforts on the domain adaptation of neural language models
[2, 3, 4, 5]. However, when training data in diverse domains
are available, no general solution has been investigated in the
literature on how to benefit from such a diversity of the data
to train a better domain independent neural language model.
The standard approach is to train the LSTM language model
[6, 7] on the all available data and if the target domain is
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known, additional fine-tuning for domain adaptation is per-
formed. This contrasts with the case of conventional ngram
count models, in which domain specific language models
[8, 9] are combined by Bayesian interpolation [10] to build
a target domain independent mixture model. In the YouTube
speech recognition dataset [11], each video is tagged with one
of 17 categories. Motivated by this data diversity, we design a
neural network architecture which integrates the diversity of
the data into a single neural language model (LM). We present
such a model together with a multi-stage training strategy. We
evaluate our model on the YouTube speech recognition test
set containing various domains, without using any domain
information at the evaluation time.

2. RECURRENT ADAPTIVE MIXTURE MODEL
FOR LANGUAGE MODELING

2.1. Model Description

The architecture of the recurrent adaptive mixture model
(RADMM) based language model is shown in Fig. 1. The
building blocks of the model are: one word embedding layer
shared across experts, multiple layers of parallel LSTM do-
main experts, the mixer LSTM network and the single soft-
max output layer. These components are composed following
the equations below which describe the forward pass of the
model. The word vector xt of the input one hot word vector
wt is first obtained by a look up in the input embedding matrix
Wemb:

xt = Wembwt

Such a vector is fed to each domain expert LSTMk for a do-
main id k ∈ 1, ..,K where K is the number of pre-defined
domains,

h
(k)
t , c

(k)
t = LSTMk(xt, h

(k)
t−1, c

(k)
t−1)

where h(k)
t and c

(k)
t respectively denote the output and the cell

state of the LSTM expert of the domain k.
The same input word vector xt is also fed to the mixer LSTM
function:

h
(mixer)
t , c

(mixer)
t = LSTMmixer(xt, h

(mixer)
t−1 , c

(mixer)
t−1 )

6079978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



   LSTM 

expert (1)

   LSTM 

expert (k)
   LSTM 

expert (K)
. . . . . .

    Word 

Embedding

LSTM 

Mixer 

FC 

Softmax 

+

x
x

x

FC 

Softmax 

Experts

   LSTM 

expert (1)

   LSTM 

expert (k)
. . .    LSTM 

expert (K)
. . .

Input layer

Output layer

Fig. 1: Recurrent adaptive mixture model (RADMM) based
neural language model.

which is followed by a fully connected layer with the softmax
activation function to generate the mixture weights over K
domains:

gt = softmax(Wmixerh
(mixer)
t + bmixer)

The scalars gt(k) are then used as the relevance weights to
combine the K LSTM expert features by linear interpolation:

st =

K∑
k=1

gt(k)h
(k)
t

which is used as the final feature to generate the output word
distribution:

p(.|wt
0) = softmax(Woutst + bout)

where wt
0 = w0, w1, ..., wt is the word history. We refer to the

parameters Wout and bout as output parameters.

2.2. Training Strategy

2.2.1. Requirements

The role of the mixer is to generate the context dependent
relevance weight for each expert. Therefore, training of the
mixer requires that the experts are already well trained. Be-
cause of this constraint, the training should at least have two
stages consisting of pre-training of experts, then training of
the mixer. Alternatively, a multi-task approach using the do-
main prediction loss can be considered to train the mixer: In
this work, we train our model only using the language model
perplexity as the objective function. In addition, in order to
reduce the memory requirement of the model, we tie the in-
put word embedding across different domains (as shown in
Fig. 1). Finally, we experimentally found that it is necessary
to initialize the final model with the output parameters shared

Table 1: YouTube training data split by categories. ’Self
Weight’ indicates the optimal interpolation weights for 5gram
count models trained on each domain when minimizing the
perplexity on the subset of the validation set with the same
domain (not all domains are in the validation set). 9 cate-
gories with the highest self weight are in bold.

User Selected Category Running words %Total Self Weight
Autos & Vehicles 31M 0.7% 6%
Comedy 30M 0.7% 29%
Education 758M 17.1% 77%
Entertainment 223M 5.0% 19%
Film & Animation 103M 2.3% -
Gadgets & Games 79M 1.8% 31%
Howto & Style 149M 3.4% 48%
Movies 409M 9.2% 31%
Music 51M 1.2% 6%
News & Politics 344M 7.8% 27%
Nonprofits & Activism 117M 2.6% -
People & Blogs 475M 10.7% 31%
Pets & Animals 8M 0.2% 29%
Science & Technology 175M 3.9% 22%
Shows 1.3B 29.7% 18%
Sports 61M 1.3% 46%
Trailer 154K 0.004% -
Travel & Events 98M 2.2% 4%
Total 4.4B 100%

across experts to train a good mixer which transfers the per-
formance of the experts to the final model. This requires us to
have the shared input embedding and the output parameters
before training the experts, by training a background model
beforehand. We therefore end up with a 3-stage training strat-
egy as described in the next sub-section.

2.2.2. 3-stage training recipe

The 3-stage training consists of the following steps. We up-
date or freeze parameters in the 4 blocks (input layer, experts,
mixer, and output layer) shown in Fig. 1 at different stages.

1. Train a background LSTM LM using all the data.

2. Take the input embedding and output parameters from
the background model to initialize the experts. Keep
these parameters constant and train each expert LSTM
only using the respective domain data.

3. Take all expert LSTM parameters, input embedding
and output parameters from previous stages to ini-
tialize the final mixture model. Keep all the experts
and input embedding parameters constant and train
the mixer LSTM on all the data while fine-tuning the
output parameters.

After exploring other strategies, we found that by using this
recipe, we can successfully transfer the performance of each
expert on their respective domain to the single mixture model.
We also include the background model as one of the experts
in the mixture model.
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3. YOUTUBE SPEECH RECOGNITION
EXPERIMENTS

3.1. Dataset
The training data consist of 4.4B running words from around
3.5M YouTube video transcriptions. Each video is tagged
with a user selected category. The distribution of the cate-
gories in the training data can be found in Table 1. In addition
to these training data, we use 71K words from transcriptions
of an additional 125 videos as the validation data during the
training of neural language models. We evaluate our model
on the YouTube evaluation set of 250K words from transcrip-
tions of 296 videos. These data sets are the same as in [12].

3.2. Domain signals in the data
While the second and the third columns of Table 1 shows the
diversity of the YouTube data, we can also check whether
these user selected categories are relevant for language mod-
eling in the respective category. For this purpose, we train
separate 5-gram count models on each domain data. We then
compute the interpolation weights that minimize the perplex-
ity on the subset of the validation data corresponding to each
category. In the last column of Table 1, the self weights in-
dicate the interpolation weight of the domain LM for its own
domain. We note that not all domains are present in this vali-
dation set. We can observe that the weights are high for most
domains, which shows that the definition of domains based
on the user selected categories is relevant. From this list, we
choose 9 domains which give the greatest self weight, to train
the domain experts.

3.3. Neural language model training setups

3.3.1. Basic setups

All neural language models are trained on 32 GPUs using a
batch size of 128 and unrolling the recurrence for 20 time
steps. We use the Adagrad [13] optimizer with an initial learn-
ing rate of 0.2. We use a vocabulary size of 133,008 words.
In training, we use the sampled softmax by sampling 4092
words from the Zipf distribution sorted by the unigram fre-
quency. All LSTMs used in this work have tied input and
forget gate, as well as the recurrent projection as in Sak et
al.’s work [14]. These setups are the same as those used in
Kumar et al. [12]. All our implementations of the neural lan-
guage models are based on the TF-Slim library of Tensorflow
[15]. In all models, we use the input word embedding size of
1024. The background model is a 2-layer LSTM with 2048
units per layer with 514 recurrent projection units.

3.3.2. Setups for the RAD mixture model

In the second stage of the training (Sec. 2.2.2), we found that
initializing all expert LSTMs with the parameters from the
background model is helpful. Therefore, the dimensions of
experts are the same as the background LSTM, except in the
case of Education, where we get slight improvements by in-
creasing the number of units to 4092 and train only on the

Table 2: Perplexity overview. The validation perplexities are
split by categories. Background and RADMM are single mod-
els while Experts are one model per category.

User Selected Category Background Experts RADMM
Comedy 111.3 104.5 107.0
Education 93.7 72.6 78.9
Gadgets & Games 94.9 74.5 86.0
Howto & Style 98.8 81.5 88.6
Movies 145.9 143.4 142.7
News & Politics 155.0 141.6 141.4
People & Blogs 129.0 126.2 121.8
Pets & Animals 98.9 94.5 94.1
Sports 156.0 130.2 140.5
Autos & Vehicles 159.9 - 146.3
Entertainment 139.5 - 132.3
Music 136.8 - 130.7
Science & Technology 112.3 - 104.9
Shows 128.9 - 124.1
Travel & Events 92.3 - 88.4
None 130.9 - 123.9
Full validation set 118.2 - 109.9
Evaluation set 61.6 - 54.0

Education data. This is reasonable given the high self weight
and the amount of data in this domain shown in Table 1. The
same recurrent projection size of 512 is used for all LSTMs.
For the sampled softmax, we used the Zipf distribution based
on the domain specific unigram frequency to train each ex-
pert. The mixer is a 1-layer LSTM with 1024 units and 512
recurrent projection units.

3.4. Text based experiments

Table 2 shows the perplexity on the validation set split by
the categories. Table 2 has two parts: The upper part shows
the perplexities on the domains for which we trained the ex-
pert models. We first notice that on some domains such as
Gadgets, the RADMM does not achieve the performance of
the domain specific expert model although it outperforms the
background model. However, overall, we can observe that
the performance of the different expert models are well trans-
ferred to the single RADMM which does not use any explicit
domain information at the evaluation time. In addition, the
lower part of Table 2 shows that the RADMM also gives bet-
ter perplexities of up to 9% relative on domains on which we
did not train the expert model. Overall on the full validation
set and the evaluation set, the improvements in perplexities of
respectively 7% and 12% relative are obtained.

3.5. Effectiveness of the mixer output activations

We can check whether the mixer function is making reason-
able decisions. Three example sentences from the valida-
tion set are shown in Fig. 2: the experts’ domain are indi-
cated on the left and input words are shown on the top. The
beginning is the same for all cases: since there is no con-
text, the mixer chooses to mainly use the background model.
Fig. 2a is a sentence from News and the News expert is acti-
vated. Now if we look at Fig. 2b, the sentence is again from
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(c) Example 3: Category Gadgets & Games.
Fig. 2: Examples of mixer output activations (for each input word and each expert category).

News, though, People and Education experts are used instead
of News. This shows some fuzziness of the user selected cat-
egories: the domains suggested by the mixer for this sentence
are also reasonable. In the example in Fig. 2c, the sentence
is clearly from the category Gadgets&Games. We observe
that the word game triggers both Gadgets and Sport experts,
which is also meaningful. This example also shows that the
RADMM is robust to domain transitions.

3.6. Lattice rescoring experiments

We apply the neural language model in the second pass lat-
tice rescoring. The lattices are generated by decoding with
the first pass 5-gram count model with about 50M ngrams
and a vocabulary size of 947K. The phone-level CTC based
acoustic model described in [16] is used. We use the push-
forward algorithm [17, 18] for lattice rescoring using a strong
pruning by keeping only the best hypothesis per node [12].
We only use the second pass LM scores as the linear interpo-
lation with the first pass LM scores did not improve the word
error rate (WER). The WERs can be found in Table 3. De-
spite this strong pruning during the rescoring, the word error
rate improves from 12.3% to 12.1%. Given the improvement
in perplexity, there is still potential for improvements in WER
by improving the search strategy during the rescoring (at the
cost of a higher computation time).

Table 3: WER results on the eval set by lattice rescoring.
Perplexities computed on the second pass 133K vocabulary.

LM PPL WER
5-gram count - 13.0 %
Background LSTM 61.6 12.3 %
RADMM 54.0 12.1 %

3.7. Scaling up

The mixture model has more parameters than the background
model since it includes the background model as one of its ex-
perts. For the RADMM to have a comparable number of pa-
rameters as the background LSTM, we would require each of
the experts to have very few parameters, thus, decreasing the
modeling capacity. Instead, we investigate how our mixture
model can scale up when we increase the size of the back-
ground model as well as that of all experts. Table 4 shows the
perplexity results of the models with 8192 units in all expert

Table 4: Perplexities of models based on 8192-unit LSTMs.
LM Valid Eval
Background LSTM 105.7 51.0
RADMM 100.7 47.8

LSTMs. All other dimensions remain the same. In this exper-
iment, we initialize all experts using the background model.
We observe that we still get improvements in perplexity of
6% relative on the evaluation set. While simply increasing
the LSTM size of a background model has limits1, we believe
that we can get further improvements by increasing the num-
ber of experts.

4. RELATED WORK
The RADMM is a new model in the family of mixture of
experts proposed in Hampshire and Waibel [19] and Jacobs et
al.’s work [20], which was used with recurrent experts in [21].
The mixture of experts has been revisited recently as a general
purpose feedforward layer in Shazeer et al.’s work [22]. We
focused on building a single domain robust language model
in the spirit of the Bayesian interpolation [10] for the ngram
count LMs. We achieved this goal by using an adaptive state
dependent mixture weights based on the LSTM. This objec-
tive differs from previous approaches for using K-component
neural LMs [23, 24]. Our model is similar to prior approaches
that employ a gating function for combining neural models
[25, 26] and domain-experts [27].

5. CONCLUSION
We designed a neural network architecture motivated by data
diversity. Our proposed model combines domain adaptation
with an LSTM based mixture of experts in a single domain
robust model. We developed a training recipe which makes
such a fusion possible. We obtained improvements in both
perplexity and WER. We observed that the mixer’s decisions
are meaningful. However, the perplexity of the mixture model
was not better than that of experts on some domains: In the
future we will work on improving the training strategy of the
mixer. Also, the computational cost of the model is high since
we run all experts for each prediction. We will investigate a
possibility for faster evaluation by making the mixing weights
sparser, and first running the mixer before the experts.

1We could not achieve a better perplexity by scaling up to 16384 units:
the best background perplexity we achieved was 110.0 on the validation set.
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