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ABSTRACT

Policy optimization is the core part of statistical dialogue
management. Deep reinforcement learning has been suc-
cessfully used for dialogue policy optimization for a static
pre-defined domain. However, when the domain changes
dynamically, e.g. a new previously unseen concept (or slot)
which can be then used as a database search constraint is
added, or the policy for one domain is transferred to an-
other domain, the dialogue state space and action sets both
will change. Therefore, the model structures for different
domains have to be different. This makes dialogue policy
adaptation/transfer challenging. Here a multi-agent dialogue
policy (MADP) is proposed to tackle these problems. MADP
consists of some slot-dependent agents (S-Agents) and a
slot-independent agent (G-Agent). S-Agents have shared
parameters in addition to private parameters for each one.
During policy transfer, the shared parameters in S-Agents
and the parameters in G-Agent can be directly transferred to
the agents in extended/new domain. Simulation experiments
showed that MADP can significantly speed up the policy
learning and facilitate policy adaptation.

Index Terms— dialogue policy, deep reinforcement
learning, adaptation, multi-agent

1. INTRODUCTION

A task-oriented spoken dialogue system (SDS) is a system
that can continuously interact with a human to accomplish a
predefined task ( e.g. finding a restaurant or booking a flight).
These systems are typically designed according to a struc-
tured ontology which consists of some concepts (or slots) that
a user might wish to use to frame a query. Each slot possesses
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Fig. 1. An example of task-oriented dialogue.

two attributes: whether it is requestable and informable. A
slot is requestable if the user can request the value of it. An
informable slot is one that the user can provide a value for
to use as a constraint on their search. Figure 1 is a dialogue
example of finding a restaurant. Here food and area are in-
formable slots, and phone is requestable slot.

At every dialogue turn, a dialogue state tracker is to main-
tain the dialogue belief state for each informable slot, i.e. a
distribution of possible values. These belief states with the
database query results form the dialogue state b, based on
which a dialogue policy π, a mapping function from b to di-
alogue action a = π(b), is to decide how to respond to the
user. Reinforcement learning (RL) methods are usually used
to automatically optimize the policy π [1]. More recently,
deep reinforcement learning (DRL) methods are adopted for
dialogue policies [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. These policies
are often represented by fully connected neural networks in-
cluding deep Q-networks and policy networks, and work well
in a static pre-defined domain. However, they are not well
suited to the situation where the ontology changes dynami-
cally, unlike the Gaussian process-based approaches [12, 13].
For example, if a new informable slot pricerange is added,
the dialogue state space and action sets will change, there-
fore the model structures have to be different, which may sig-
nificantly degrade performance. Furthermore, policy transfer
between different domains is also challenging, because their
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state space and action sets both are fundamentally different.
In this paper, we propose a multi-agent [14] dialogue

policy (MADP) which facilitates policy adaptation/transfer.
MADP consists of some slot-dependent agents (S-Agents)
and a slot-independent agent (G-Agent). Each S-Agent fo-
cuses on a different informable slot, and G-Agent focuses on
slot irrelevant aspects. When making decision, each agent
first chooses a candidate action according to its own policy.
Final action is then selected from these candidate actions.
S-Agent has shared parameters in addition to its private
parameters. The private parameters capture the specific char-
acteristics for each slot, and the shared parameters capture the
common characteristics of all slots. With the shared parame-
ters, the skills from one S-Agent can be transferred to another
S-Agent, which may speed up the learning process. More-
over, when a new slot in added, the shared parameters can
be used to initialize the corresponding S-Agent, i.e. the new
S-Agent can be thus transferred some common skills from
other S-Agents. To the best of our knowledge, this paper is
the first attempt to investigate the policy adaptation/transfer
in DRL-based dialogue policy.

2. PROPOSED FRAMEWORK

In this section, we will first present MADP in detail, where
S-Agents only have shared parameters. Then we introduce an
approach to integrate private parameters and shared parame-
ters for S-Agents, followed by the concrete procedures to do
dialogue policy adaptation under MADP framework.

Note that the proposed MADP does not depend on any
specific DRL algorithm, hence is compatible with all exist-
ing DRL algorithms. Here, we use it within deep Q-network
(DQN) framework and call it multi-agent DQN (MADQN).

2.1. Multi-Agent Dialogue Policy

Supposing in a domain there are n informable slots, and the
dialogue state b usually can be decomposed into sub-states
b1, · · · ,bn and bg , i.e. b = b1⊕· · ·⊕bn⊕bg . bj(1 ≤ j ≤
n) is the belief state corresponding to j-th informable slot,
and bg represents the slot-independent state, e.g. database
search results. Similarly, the summary actions can be divided
into n+1 sets including n slot-dependent action sets Aj(1 ≤
j ≤ n), e.g. request slotj , confirm slotj , select slotj , and one
slot-independent action set Ag , e.g. repeat, offer.

MADP consists of n slot-dependent agents, i.e. S-Agents
Aj(1 ≤ j ≤ n), each one corresponding to an informable
slot, and a slot-independent agent, i.e. G-Agent Ag . Figure
2(a) provides an overview of MADP with DQN as the DRL
algorithm.

• The input of Aj is bj , and the output is the Q-
values qj corresponding to actions in Aj , i.e. qj =
[Q(bj , aj1), · · · , Q(bj , ajms)], where ajk(1 ≤ k ≤
ms) ∈ Aj .

Fig. 2. MADQN with 4 S-Agents (green) for 4 informable
slots and the G-Agent (yellow). (a) The overview of MADQN
with 3 hidden layers, i.e. two communication steps. (b) A
single communication step, i.e. the details of connection be-
tween two hidden layers in (a). (c) The hidden layers for a
S-Agent (top) and the G-Agent (bottom).

• The input of Ag is bg , and the output is the Q-
values qg corresponding to actions in Ag , i.e. qg =
[Q(bg, ag1), · · · , Q(bg, agmg )], where agk(1 ≤ k ≤
mg) ∈ Ag .

To obtain the Q-values q for all actions, the outputs of all
agents are concatenated as shown in Figure 2(a), i.e. q =
q1 ⊕ · · · ⊕ qn ⊕ qg . When making decision, the action is
chosen according to q.

These agents have some internal messages exchange [15,
16] when they calculate their own Q-values. As shown in Fig-
ure 2(b), after i-th hidden layer, both Aj and Ag will output
some messages. Here, we just use the output of hidden layer
as messages, i.e. hi

j forAj and hi
g forAg . At (i+1)-th hidden

layer, the input ofAj includes the output of its previous layer
hj , the message from other S-Agents cij ,

cij =
1

n− 1

∑
1≤l≤n,l 6=j

hi
l,

and the message from G-Agent gi, gi = hi
g. Based on hi

j , c
i
j

and gi, the output of (i+1)-th hidden layer of Aj is shown at
the top of Figure 2(c) 1, i.e.

hi+1
j = σ(Hi

sh
i
j +Ci

sc
i
j +Gi

sg
i), (1)

where σ is a non-linear activation function, e.g. RELU. θs ,
{Hi

s,C
i
s,G

i
s}Li=1 are weight matrices, i.e. parameters shared

across all slot-dependent agents.
Similarly, at (i+1)-th hidden layer of Ag , the input in-

cludes the output of its previous layer hi
g and the message

from S-Agents cig ,

cig =
1

n

∑
1≤j≤n

hi
j .

1For simplicity, the bias term is omitted.
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Based on hi
g and cig , the output of (i+1)-th hidden layer ofAg

is shown at the bottom of Figure 2(c), i.e.

hi+1
g = σ(Hi

gh
i
g +Ci

gc
i
g), (2)

where θg , {Hi
g,C

i
g}Li=1 are weight matrices.

In summary, MADQN can be viewed as a structured DQN
with hidden layers hi+1 = σ(Tihi) where hi is the concate-
nation of all hi

j(1 ≤ j ≤ n) and hi
g , i.e. hi = hi

1 ⊕ · · · ⊕
hi
n ⊕ hi

g . Ti takes the form

Ti =
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where C
i

s = 1
n−1C

i
s and C

i

g = 1
nC

i
g . The training process

of MADQN is similar to vanilla DQN [17] except that the
weight matrix is structured as equation (3).

2.2. Shared-Private Weighted Network

In simple domains where slots have similar characteristics,
shared parameters are sufficient to capture the differences be-
tween different slots. However, in more complex domains,
private parameters are needed to capture their characteristics.
Here, we propose a shared-private weighted network (SPWN)
to introduce private parameters in S-Agent.

In SPWN, each S-Agent Aj has its own private parame-
ters θj , {Hi

j ,C
i
j ,G

i
j}Li=1 in addition to the shared param-

eters θs , {Hi
s,C

i
s,G

i
s}Li=1 across all slots. For each input

bj , the agent first computes the outputs with θj and θs in par-
allel, then takes the weighted average of two outputs to obtain
the final output qj , i.e.

qj = αNet(bj ; θj) + (1− α)Net(bj ; θs), (4)

where α ∈ [0, 1] is the weight. The more complex the do-
main/task, the larger α should be.

2.3. Policy Adaptation

The general procedure of MADP-based policy adaptation,
namely Shared-Private-Adaptation (SP-Adapt): (1) Initial-
ize the shared parameters θs, the private parameters θj for
S-Agent Aj and the parameters θg for G-Agent Ag . (2)
Train the multi-agent policy in original domain. (3) When
domain is extended, the private parameters for new S-Agent
θj are initialized by θs, or when it’s transferred to a new
domain, the shared parameters θ′s for S-Agents and the θ′g
for G-Agent are initialized by the corresponding parameters
in the original domain, i.e. θ′s ← θs and θ′g ← θg . The
private parameters θ′j are initialized by θs with added noise,

i.e. θ′j ← θs + N (0, σnoiseI). (4) Continuously train the
policy in the extended/new domain.

In addition, if the original domain and the extended/new
domain are relatively simple and their interactive environ-
ments follow similar patterns, it would be sufficient to use a
simplified MADP framework with no private parameters for
S-Agents to achieve satisfying results. For an extended/new
domain, the shared parameters for S-Agents and the parame-
ters for G-Agent are initialized by the corresponding parame-
ters in the original domain. This is called Shared-Adaptation
(S-Adapt) procedure.

3. EXPERIMENTS

Two objectives are set for the experiments: (1) Comparing the
performances of policy learning on single domain between
our proposed MADP and traditional models. (2) Comparing
the policy adaptation performances of different models and
investigating the benefits of our proposed MADP framework.

Here the purpose of the user’s interacting with SDS is
to find restaurant/tourist information in the Cambridge (UK)
area [18, 19]. There are three domains: DSTC2 Simple,
DSTC2, and DSTC3. DSTC2 Simple and DSTC2 are both
restaurant information domain. DSTC2 Simple has 6 slots of
which 3 can be used by the system to constrain the database
search. DSTC2 has an additional pricerange slot. DSTC3
is tourist information domain, and it has all slots on DSTC2
and 5 new slots. An agenda-based user simulator [20] with
semantically conditioned LSTM-based natural language gen-
erator (SC-LSTM-NLG) [21] was implemented to emulate
the behavior of the human user. With SC-LSTM-NLG, the
semantics-level dialogue acts from user simulator are con-
verted to N-based utterance list as ASR results. An SVM-
based semantic parser [22] was trained on DSTC2/3 datasets.
The semantic error rates on DSTC2 and on DSTC3 are ∼0.15
and ∼0.40 respectively.

For the reward, at each turn, a reward of−0.05 is given to
the policy. At the end of the dialogue, a reward of +1 is given
for dialogue success.

3.1. Fast Policy Learning

Fig. 3. The learning curves in DSTC2 domain.
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In this section, our proposed multi-agent methods are
compared with other methods on DSTC2 when there is no
adaptation. As shown in Figure 3, three models are com-
pared: (1) dqn is a dropout DQN proposed in [8], which
performs much better than vanilla DQN. It has two hidden
layers, each with 128 nodes. The dropout rate is 0.2. (2)
madqn s is MADQN as shown in Figure 2. Each S-Agent
has no private parameters. All agents have three hidden lay-
ers, i.e. two communications steps. The sizes of each hidden
layer for S-Agents and G-Agent are 32 and 62 respectively.
Similarly, it has dropout layers, and the dropout rate is 0.1. (3)
madqn sp is similar to madqn s except that each S-Agent
has private parameters in addition to the shared parameters as
described in section 2.2.

We can find that multi-agent models (madqn s and
madqn sp) achieve faster learning speed at the early stage
of learning and better convergence performance. While com-
paring madqn s with madqn sp, they have little difference
in learning speed and final performance, which indicates that
the shared parameters are sufficient to capture the different
characteristics of slots on DSTC2.

3.2. Policy Adaptation

Fig. 4. The learning curves of policy adaptation from
DSTC2 Simple to DSTC2.

In this section, we will compare MADQN with DQN for
policy adaptation. Figure 4 and Figure 5 are the results of
policy transfer from DSTC2 Simple to DSTC2 and the re-
sults of policy transfer from DSTC2 to DSTC3 respectively.
Here, three policies are compared: For dqn adapt, dqn is
first pre-trained in the original domain with 15000 dialogues.
When the domain is extended to the new domain, the number
of input features and the summary action space both increase.
The corresponding new weights to input layer and output
layer are randomly initialized with N (0, 0.01) before contin-
uously trained in the new domain. For madqn s adapt (or
madqn sp adapt), madqn s (or madqn sp) is first pre-
trained in the original domain with 15000 dialogues. Then
it is transferred to a new domain following the procedure of
S-Adapt (or SP-Adapt) described in section 2.3.

From Figure 4, we can find that MADQN-based mod-
els (madqn s adapt and madqn sp adapt) learn much

Fig. 5. The learning curves of policy adaptation from DSTC2
to DSTC3.

faster than dqn adapt when they are transferred from
DSTC2 Simple to DSTC2. The newly added S-Agent for new
slot pricerange can use the shared parameters, i.e. transfer
some skills from other agents. Comparing madqn s adapt
in Figure 4 with madqn s in Figure 3, obvious improvement
at the early learning process can be observed, which demon-
strates the effectiveness of knowledge transfer through shared
parameters.

Comparing madqn sp adapt with madqn s adapt,
we can find that introducing private parameters in MADQN
does not lead to any improvement on DSTC2. The reason
lies in that the shared parameters are sufficient to capture the
differences between 4 slots

In Figure 5, MADQN without private parameters in S-
Agents (madqn s adapt) also learns much faster than
dqn adapt at the beginning. However, it reaches a sub-
optimal convergence at the end. On DSTC3, there are 8
informable slots, and the shared parameters are not sufficient
to capture the differences between these slots. So introduc-
ing private parameters (madqn sp adapt) can significantly
boost the performance.

4. CONCLUSION

This paper proposed a DRL-based multi-agent dialogue pol-
icy (MADP) framework, consisting of a slot-independent
agent, G-Agent, and some slot-dependent agents, S-Agents.
Under this framework, shared parameters in S-Agents can
be easily transferred from one domain to another, ensuring
a good initialization and fast subsequent learning in the new
domain. Experiments showed that the proposed MADP-
based models learn faster than traditional models in the single
domain, and achieve efficient and effective policy adaptation
from original domain to extended/new domain. However, the
results also indicated that in complex domains, e.g. DSTC3,
policy transfer is still challenging. Although policies are
pre-trained in the original domain, their initial success rates
on DSTC3 are low. Further investigation of methods for
improving the efficiency of policy transfer is needed.
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