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ABSTRACT
In statistical dialogue management, the dialogue manager
learns a policy that maps a belief state to an action for the
system to perform. Efficient exploration is key to successful
policy optimisation. Current deep reinforcement learning
methods are very promising but rely on ε-greedy exploration,
thus subjecting the user to a random choice of action during
learning. Alternative approaches such as Gaussian Process
SARSA (GP-SARSA) estimate uncertainties and sample ac-
tions leading to better user experience, but on the expense
of a greater computational complexity. This paper exam-
ines approaches to extract uncertainty estimates from deep
Q-networks (DQN) in the context of dialogue management.
We perform thorough analysis of Bayes-By-Backpropagation
DQN (BBQN). In addition we examine dropout, its concrete
variation, bootstrapped ensemble and α-divergences as other
means to extract uncertainty estimates from DQN. We find
that BBQN achieves faster convergence to an optimal policy
than any other method, and reaches performance comparable
to the state of the art, but without the high computational
complexity of GP-SARSA.

Index Terms— dialogue management, reinforcement learn-
ing, Bayesian neural networks.

1 Introduction

Spoken Dialogue Systems (SDSs) allow human users to in-
teract with computers through speech. SDSs have became
a common deployment in the speech interfaces in mobile
phones, and are gaining greater commercial use.

Statistical approaches to dialogue modelling allow automatic
optimisation of the SDS behaviour. The Partially Observ-
able Markov Decision Process (POMDP) framework [1] over-
comes the problem of noisy estimates of spoken language un-
derstanding by assuming the dialogue state is only partially
observable. A distribution over states is maintained, which is
called the belief state, and a dialogue policy maps the belief
state into an appropriate action at every dialogue turn. The
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ability to generalise across different noise levels is essential
for successful dialogue policy operation.

Reinforcement leaning is used to learn a policy that maxi-
mizes the expected sum of rewards received after visiting a
state [2], and an action-state value function Q is computed
for this purpose. For dialogue systems, the state-action space
is large, and a Q-function approximation is necessary. To ex-
plore the environment, an ε-greedy policy can be employed,
where a greedy action is taken w.r.t. the estimated Q-function
with probability 1 − ε, and a random one with probability ε.
However, given the large action-state space, a randomly ex-
ploring Q-learner is not sample efficient. Convergence to an
optimal policy is slow and successful dialogues are hard to
achieve. This is especially the case in on-line learning, where
the user is potentially subjected to poor behaviour.

The Q-function value of each state-action pair can be aug-
mented with an estimate of its uncertainty to guide explo-
ration, and achieve faster learning and a higher reward during
learning [3]. Gaussian Processes (GPs) provide an explicit
estimate of uncertainty [4], overcoming the above-mentioned
problems. However, GP-SARSA requires computing the in-
verse of a Gram matrix K for determining the predictive pos-
terior and estimating Q at new locations, which prohibits its
use for large action spaces.

Deep neural network (DNN) models on the other hand scale
well with data and are computationally less complex than
GPs. They proved to be well suited for policy management
task [5, 6, 7]. However, they do not directly provide an es-
timate of uncertainty, relying on ε-greedy exploration, which
lowers the sample efficiency.

Building upon recent advancements in Bayesian deep learn-
ing [8, 9, 10, 11], we perform an extensive benchmark of
uncertainty estimates in the dialogue domain. Specifically,
following [12], this paper compares the Bayes By Backprop
method for deep-Q-networks (BBQN) to GP-SARSA and
other deep RL methods. We investigate how BBQN can be
improved and be made competitive with GP-SARSA. We
show that BBQN learns dialogue policies with more efficient
exploration than other deep Bayesian methods, and reaches
performance comparable to the state of the art in policy op-
timization, namely GP-SARSA, particularly in high noise
conditions.
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2 Uncertainty in DNNs

To obtain uncertainty estimates from a neural network,
Bayesian neural networks (BNNs) can be employed [13].
Instead of having single fixed value weights in the neural
networks w, all weights are represented by probability dis-
tributions over possible values given observed dialogues D,
P (w|D). Uncertainty in the hidden units allows the expres-
sion of uncertainty about predictions [8].

In the case of value-based deep reinforcement learning, we
approximate the expected discounted sum of future rewards
given an action a in a state b:

Q(b, a) = Eπ{rt + γrt+1 + ... |bt = b, at = a},

where rt is the one-step reward received at a given time t and
γ is a discount factor. We model action-value function using
a deep neural network by iteratively improving our guess by
minimizing the loss:

L(wt) = E
[
(yt − Q̂π(bt, at;wt))

2
]

(1)

where targets are yt = rt + γmaxa′ Q̂
π(bt+1, a

′;wt) and the
expectation is usually taken with respect to ε-greedy policy
[14].

For exploration, Thompson sampling is used instead of ε-
greedy, which consists of performing a single stochastic for-
ward pass through the network every time an action needs to
be taken. TheQ-values given the input belief state b are given
by:

Q(b, a) = E
P (w|D)

[Q|b, a, w]. (2)

Taking an expectation under the posterior distribution is
equivalent to using an ensemble of an uncountably infinite
number of neural networks, which is intractable [8]. We have
to resort to sampling-based variational inference or stochastic
variational inference.

We used in this benchmark five algorithms to extract uncer-
tainty estimates from deep Q-Networks. Four of them can be
casted within the variational inference framework:

Variational inference. The intractable posterior P (w|D) is
approximated with a variational distribution q(w|θ). The pa-
rameters are learnt by minimizing the Kullback-Lieber (KL)
divergence between the variational approximation q(w|θ) and
the true posterior on the weights P (w|D). The resulting cost
function is termed as the variational free energy [15]:

F = KL[q(w|θ)||P (w)]− E
q(w|θ)

[lnP (D|w)]. (3)

Deep BBQ-Learning. We implement the Bayes-by-backprop
method with DQN. To propagate the error through a layer

that samples from q(w|θ), the reparameterization trick is
used [16]. We choose q(w|θ) to be a Gaussian with diagonal
covariance with a variational parameter set θ. Given the mean
µi and covariance σi of q for each weight, a sample from q
is obtained by first sampling εi ∼ N (0, σε), then computing
wi = µi + σi ◦ εi, where ◦ is point-wise multiplication.
To ensure all σi are strictly positive, the softplus function
σi = log(1 + exp(ρi)) is used where ρ is a free parameter
[12]. The variational parameters are then θ = {µi, ρi}Di=1 for
D-dimensional weight vector w. The resulting gradient esti-
mator of the variational objective is unbiased and has a lower
variance. The exact cost in Eq. 3 can then be approximated
as:

F(D, θ) ≈
n∑
i=1

log q(w(i)|θ)− logP (w(i))− log p(D|w(i))

(4)
wherew(i) is the ith Monte Carlo sample drawn from the vari-
ational posterior q(w(i)|θ). For the objective function in Eq.
3, we use the expected square loss. Note that least-squares
regression techniques can be interpreted as maximum likeli-
hood with an underlying Gaussian error model.

α-Divergences. The approximate inference technique de-
scribed in the Bayes-by-backprop method corresponds to
Variational Bayes (VB), which is a particular case of α-
divergence, where α → 0 [17]. The α-divergence measures
the similarity between two distributions and can take the
form:

Dα[p||q] =
1

α(α− 1)
(1−

ˆ
p(θ)αq(θ)1−αdθ), (5)

where α > 0.

Hernandez-Lobato et al. [17] found that using α 6= 0 per-
forms better than the VB case, where an approximation with
α ≥ 1 will cover all the modes of the true distribution, and the
VB case only fits to a local mode, assuming the true posterior
is multi-modal [17]. α = 0.5 achieves a balance between the
two and has shown to perform best when applied to regression
or classification tasks.

We experiment with an objective function based on the black
box α-divergence (BB- α) energy. We use the reparametriza-
tion proposed by [10] :

Lα ≈ Ľα = KL[q(w|θ)||P (w)]− 1

α

∑
n

log E
q(w|θ)

[P (D|w)],

(6)
where Lα designates the BB- α energy, Ľα designates an ap-
proximation, and n corresponds to the number of datapoints
in the minibatch.

DQN-Dropout. Another method to obtain uncertainty es-
timates in deep neural networks is Bayesian inference with
dropout [18]. Dropout consists of randomly dropping units
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(with some probability d) from the neural network during
training [19].

As in the previous methods, dropout can be analyzed from the
variational inference perspective (Equation 3). This comes
from the fact that applying a stochastic mask is equivalent
to multiplying the weight matrix in a given layer by some
random noise. The resulting stochastic weight matrix can be
seen as draws from the approximate posterior over weights,
replacing the deterministic weight matrix [18].

DQN-Concrete Dropout. To obtain well-calibrated uncer-
tainty estimates with above method, a grid-search over the
dropout probabilities is necessary. However, we can treat a
dropout as a part of optimization task obtaining an automatic
method of tuning the mask. One method is to continuously
relax the dropout’s discrete masks and optimize the dropout
probability using gradient methods [11]. Dropout d probabil-
ity becomes one of the optimized parameters. The concrete
distribution relaxation z of the Bernoulli random variable be-
comes:

z = sigmoid(
1

t
(log d− log(1− d) + log u− log(1− u))

with some temperature twhich results in values in the interval
[0, 1] and u ∼ U(0, 1).

Bootstrapped DQN. Another method to extract uncertainty
estimates from DNNs is the bootstrapped method by Osband
et al. [9]. Exploration can be improved with random ini-
tialization of several neural networks which in ensemble pro-
duce reasonable uncertainty estimates for neural networks at
low computational cost. To improve efficiency, all networks
share the same architecture with a different last layer (head)
computing Q-values. Surprisingly, in its default case when
all networks share the same memory replay, the algorithm
obtained the highest scores. Here we employ this ensemble
variant.

Computation complexity To obtain uncertainty estimates
GPSARSA needs O(nk2) steps, where n is the total number
of data points during training and k is the number of represen-
tative data points (k << n). Training complexity for dropout,
concrete dropout and bootstrapped DQNs is O(N) in every
step where N is the number of neural network parameters.
Complexity for BBQN is tripled as it requires three set of
parameters.

3 Related Work

This work is motivated by the results obtained by Lipton et al.
[12], which compares the performance of BBQN to DQN for
policy optimisation in a dialogue system in a movie domain.
Using more principled exploration, the agent learns a faster
and better policy over standard ε-greedy and bootstrapped

approaches.More recent work shows how uncertainty esti-
mates obtained with dropout can improve safety and effi-
ciency of policy optimization [20]. The authors proposed
a student-teacher architecture where a data-driven student
policy chooses to update its policy consulting a rule-based
system based on uncertainty estimates.

4 Evaluation

Experiments are conducted using the Cambridge restaurant
domain from the PyDial toolkit [21] with an agenda-based
simulator on the semantic level. The Cambridge restaurant
domain consists of a selection of about 150 restaurants, with
8 slots for every restaurant. The input for all models is the
full dialogue belief state b of size 268, which includes the last
system act and distributions over the user intention and the
requestable slots. The summary action space consists of 14
actions.

We use the same DQN architectures with four ways of ex-
tracting uncertainty estimates - Bayes by backrop, dropout,
concrete dropout and bootstrapped ensemble. All mod-
els are trained over 4000 simulated dialogues with mini-
batches of 64. The experience replay pool size is 1000
for vanilla, dropout and BBQN DQNs and 6000 for boot-
strapped and concrete models. Each sample is a state transi-
tion (bt, at, rt, bt+1).

All deep RL models contains two reLU hidden layers of size
130 and 50. The Adam optimiser is used with a learning rate
of 0.001 [22]. For vanilla DQN, an ε-greedy policy is used,
which is initially set to a 0.75 value, and annealed to 0.0 after
4000 training dialogues.

4.1 Comparison with baselines

In Figure 1, we show the average success rate, and the aver-
age reward for BBQN, DQN, DQN with dropout, DQN with
a concrete dropout, bootstrapped DQN and GPSARSA, in a
noise-free environment.

We find that GPSARSA learns the fastest and is the most sta-
ble, benefiting from the ability of Gaussian Processes to learn
from a small amount of data, exploiting the correlations de-
fined by the kernel function. The results show that BBQN
reach a performance comparable to GP-SARSA, and DQN in
general. DQN reaches a higher final success rate than BBQN
and a more stable performance at final stages of the training,
but converges much slower, with high instability.

Three other analyzed methods, dropout, concrete dropout
and bootstrapped approach, did not help improving learning
rate over the vanilla ε-greedy algorithm neither they stabi-
lize exploration. Although with concrete dropout tuning of

6071



0 500 1000 1500 2000 2500 3000 3500 4000

Training Dialogues
20

30

40

50

60

70

80

90

100

S
uc

ce
ss

 ra
te

 (%
)

BBQN
DQN
DQN-Dropout
DQN-Bootstrapped
DQN-ConcreteDropout
GP SARSA

Fig. 1: The success rate learning curves for BBQN, GP-
SARSA, DQN, DQN with dropout, DQN with concrete
dropout and bootstrapped DQN under noise-free conditions,
with two standard error bars.

the dropout probability is automatic, it did not help improve
efficiency. We also optimize over number of heads with
bootstrapped DQN, however, the performance did not vary
substantially yielding the best results with 5 heads.

For α-divergences (Figure 2), we find the value α = 0.5 or
other settings of α do not perform better than VI in general.
Convergence to an optimal policy is slower with increasing
number of samples. Taking more MC samples decreases the
variance of the gradient estimates, and the averaged loss for
most updates is closer to the loss obtained when taking a sam-
ple close to the mean of the variational distribution q. This
implies more updates are necessary to move in the direction
of the true posterior distribution p, trading off for reduced ex-
ploration, and slower learning.

Fig. 2: K = 5 MC samples

4.2 Noise-robustness

We also investigated the impact of noise by training all mod-
els with the simulated user with a 15% semantic error rate,
then evaluated on 45% semantic error rate to examine the
generalisation capabilities of different algorithms. The final

success rates are given in Fig. 3 as a function of the training
dialogues.

The results show that GP-SARSA performs best in terms of
success rate, followed closely by BBQN. This shows that
BBQN generalizes better than ε-greedy algorithms. BBQN
has the potential for robust performance, and performs well,
even at conditions different from the training conditions. All
other other methods fall behind substantially with only vanilla
DQN being able to reach similar performance at the end of
the training.
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Fig. 3: The success rate learning curves for BBQN, GP-
SARSA, DQN, DQN with dropout, DQN with concrete
dropout and bootstrapped DQN with a 45% confusion rate
at testing, and 15% confusion rate during training.

5 Conclusion

This paper has described how the Bayes-by-backprop method
can be applied successfully to obtain uncertainty estimates
in DQN (BBQN), when applied to POMDP-based dialogue
management. The results obtained confirm that BBQN learns
dialogue policies with more efficient exploration than ε-
greedy based methods, and reach performance comparable to
the state of the art in policy optimization, namely GPSARSA,
especially when evaluated on more complex domains. BBQN
is also almost as sample efficient as GP-SARSA, but with-
out the computational complexity of GPs. When trained
with a noise level of 15%, then evaluated at 45%, BBQN
achieved higher performance at higher confusion rates than
other deep RL methods. This shows that BBQN general-
izes better than other deep RL methods and is as robust as
GP-SARSA.

Future research in this area will need to address a number of
issues. First, improvements to the uncertainty of estimates for
BBQN are needed to improve its sample efficiency. A better
stability at later stages of training needs also to be addressed
with BBQN. Methods for better hyperparameter tuning need
to be considered as well.
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