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ABSTRACT

Multi-domain dialogue systems face challenges such as scal-
ing algorithms to handle large ontologies, or transferring
trained policy models to unseen domains. We attempt to ad-
dress these challenges by proposing a dialogue management
architecture that has an abstracted view of the world but yet
is able to focus on relevant parts of the ontology at runtime.
Specifically, we train a sub-domain identifier neural network
that learns which features are relevant to the current turn and
the immediate future, thus filtering out irrelevant information
from the ontology and consequently the belief space at each
dialogue turn. We then train a policy network that needs:
a) to adapt to the sub-domain identifier’s output; and b) to
learn what information will carry over from previous turns
and when it needs to be updated. We evaluate our method
on a large information-seeking ontology that contains latent
sub-domains. Our results in simulation and a small human
trial show that the sub-domain identifier is able to generalise
to unseen domains and achieve performance on par with a
multi-domain dialogue manager where each sub-domain is
carefully defined (golden standard).

Index Terms— Spoken Dialogue Management, Multiple
Domains, Dialogue Policy, Policy Network

1. INTRODUCTION AND RELATED WORK

As we move towards Spoken Dialogue Systems (SDS) that
are able to converse about multiple topics, we face challenges
in scaling these systems to real-world applications. Such chal-
lenges include handling large domain ontologies and transfer-
ring information across domains. In this work, we attempt to
address the first challenge by proposing a dialogue manage-
ment model that has an abstracted view of the world but yet
is able to focus on the topic under discussion at each dialogue
turn. Assuming that not all of the knowledge encoded by an
ontology is needed in every dialogue, we present a method
for filtering out irrelevant information from a domain ontol-
ogy and consequently the belief space, at each dialogue turn.
We achieve this by training a neural network that learns which
features are relevant in the current turn, including features that
will be useful in the immediate future, effectively defining a
sub-domain at each turn. We address the second challenge by
using a domain-independent policy model that uses the afore-

mentioned network’s output to judge when information ob-
tained from other sub-domains needs to be updated. The main
idea behind our architecture is to have a single representation
for each ontology attribute, e.g. have a single representation
for price regardless of any specific items it refers to (a flight,
a laptop, a loan, etc.), and let the belief tracker and dialogue
policy network decide when the value of each attribute (slot)
needs to be confirmed or updated.

Moreover, if the ontology represents general knowledge
(e.g. Wikipedia), then this modelling allows the system to op-
erate only on the relevant part of the ontology and to more flu-
idly move between topics when conversing with human users.
We build on prior work on multi-domain SDS that use a sin-
gle policy model across information-seeking domains [1], by
operating in a domain-independent feature space [2]. This al-
lows us to train a policy network that works even if the domain
(or sub-domain in this case) changes in real time. Last, we
alleviate some of the costly burden of carefully designing on-
tologies for each domain the system can talk about, and only
require a generic ontology; this can be very beneficial in cases
where we need to extend the domains, for example. Figure 1
shows the overall architecture of the SDS, where SLU iden-
tifies the users’ intentions, Belief Tracking outputs some hy-
potheses about the current dialogue state which is then input
to SDI. SDI filters the parts of the ontology that are deemed
relevant for the current turn and generates the respective sub-
domain, which is passed on to the domain independent feature
extractor and policy. NLG then generates the system’s output.

Fig. 1. The architecture of our sub-domain identifier SDS.

While our work may have similarities to topic tracking,
we do not use any linguistic features or track the current sub-
domain in the traditional topic-tracking sense. What our ar-
chitecture does is filter out irrelevant parts of the belief state
and subsequently the domain ontology (including system ac-
tions), implicitly defining features that are relevant to the cur-
rent turn (which include features that are useful to make de-
cisions about the immediate future). Therefore, it is not nec-
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essary that all of the relevant features for a given dialogue
will be active on every dialogue turn, as would be the case if
we were tracking the topic. This means that our work is not
directly comparable to topic tracking.

In related work, Gašić et al. [3] proposed a hierarchical
structure to train generic dialogue policies that can be refined
when in-domain data become available. A Bayesian Commit-
tee Machine (BCM) over multiple domain-specific dialogue
policies decides which policy can better handle the input, and
delegates control to that policy. In [4], the authors use Deep
RL to train a multi-domain Dialogue Manager (DM) repre-
sented as a network of Deep-Q policy networks (NDQN),
each of which learns a domain-specific dialogue policy. Our
work is different in that we train a single Deep-Q network that
is able to operate across domains, therefore making it much
more scalable. Crook et al. [5] present the Task Completion
Platform where the main idea is to decouple task definition
from the dialogue policy via a task description language that
defines each task which has an associated task-specific policy.

A relevant direction of research is that of decomposing a
complex (dialogue) task into a hierarchy of sub-tasks [6, 7, 8,
e.g.], that has recently re-emerged in the literature. [9] train
a hierarchical policy using deep reinforcement learning that
has two parts, the top-level (more generic) policy and the low-
level (more domain-specific) policy using semi-MDPs. [10]
also train a hierarchical policy in a similar framework but us-
ing GP-SARSA as the core learning method. Both methods
attempt to address the fact that domains should share infor-
mation, as what happens in one domain (e.g. flight booking)
can affect another domain (e.g. hotel booking); our method
attempts to implicitly learn such information transfers across
domains, and learns when to keep a slot’s value or when to
ask for more information. Zhao et al. [11] proposed to chain
a belief update network and a policy network, however that
work concerns single-domain dialogues.

2. SUB-DOMAIN IDENTIFICATION (SDI)

We here briefly present the problem we are trying to address,
within the statistical dialogue management framework. A
POMDP DM typically receives an n-best list of language un-
derstanding hypotheses, which are used to update the belief
state, reflecting an estimate of the user’s goals. The system
then selects a response that maximises the long-term return
of the system. Concretely, a POMDP is defined as a tuple
{Z,A, T,O,Ω, R, γ}, where Z is the state space, A is the
action space, T : Z × A → Z is the transition function,
O : Z × A → Ω is the observation function, Ω is a set of
observations, R : Z × A → < is the reward function and
γ ∈ [0, 1] is a discount factor of the expected cumulative re-
wards J = E[

∑
t γ

tR(zt, at)]. A policy π : Z → A dictates
which action to take from each state. An optimal policy π?

selects an action that maximises the expected returns of the
POMDP, J . Learning consists exactly of finding such opti-

mal policies; however, due to state-action space dimension-
ality, approximation methods need to be used for practical
applications [12, e.g.].

Let now D be a collection of domains, defined as:

D = {di|di = {φi,1, ..., φi,Ni}, i = 1, ...,K} (1)

where each domain di is represented as a set of features
φk,n ∈ ΦD, and ΦD is a set of features across all domains.
A domain feature can be defined as sets of slots and actions,
as abilities (i.e. micro-domains with elementary capabilities
such as “retrieve price range”), or any other quantity that
defines a conversational domain. Each domain d is associated
with an optimal dialogue policy π?d(zt). Given an input ut at
time t, the problem we are addressing can be stated as:

maxψD
{J(π?ψD

, ut)}, ψD ⊆ ΦD (2)

It should be noted that ψD may or may not exactly match
an existing domain d ∈ D. π?ψD

is the optimal policy w.r.t
ψD, i.e. π?ψD

(st) = a?t , where a?t is the optimal action for
state zt. The cumulative reward J is then defined as:

J(π?ψD
, ut) = E[

∑
t

γtR(ut, zt, π
?
ψD

(zt))] (3)

where R(ut, zt, at) is the reward function conditioned on
the cross-domain user goals underlying ut.

3. DOMAIN-INDEPENDENT DIALOGUE

Domain Independent Parameterisation (DIP) [2] is a method
that maps the (belief) state space into a feature space of size
N , that is independent of the particular domain: ΦDIP (z, s, a) :
Z × S × A → <N , z ∈ Z, s ∈ S, a ∈ A, where S is the
set of slots (including a ‘null’ slot for actions such as hello).
ΦDIP therefore extracts features for each slot, given the
current belief state, and depends on A in order to allow for
different parameterisations for different actions. This allows
us to define a fixed-size domain-independent space, and poli-
cies learned on this space can be used in various domains,
in the context of information-seeking dialogues. As shown
in [1, 13], we can take advantage of DIP to design efficient
multi-domain DMs, the main benefit being that we learn a
single, domain-independent policy model that can be applied
to information-seeking dialogues.

For our experiments, we define the action space A :=
{inform(s1, v1, ..., sN , vN ), request(s), select(s, v1, v2),
confirm(s, v), reqmore(), repeat(), hello(), bye()}. By
operating in ΦDIP × A instead of the original belief-action
space, we achieve independence in terms of slots and actions
as long as the actions of any domain can be represented as
functions ofA×S. The DIP policy therefore maximises over
both actions and slots:

st+1, αt+1 = argmaxs,a{Q[ΦDIP (bt, s, a), a]} (4)
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Fig. 2. The architecture of our DNN-based sub-domain DM.

where α(s) ∈ A × S is the selected summary action, bt is
the belief state at time t, and a ∈ A. To approximate the
Q function, we use a 2-layered FFN with 80 and 60 hidden
nodes, respectively. The input layer receives the DIP feature
vector ΦDIP (z, s, a) and the output layer is of size A; each
output dimension can be interpreted as Q[ΦDIP (z, s, a), a]:

−→
Q(ΦDIP (zt, s, a)) ≈ softmax(WM

k xM−1k + cM ) (5)

where
−→
Q(ΦDIP (zt, s, a)) is a vector of size |A|, Wm are the

weights of the mth layer (out of M layers in total) for nodes
k, xmk holds the activations of the mth layer, where x0 =
ΦDIP (zt, s, a), and cm are the biases of the mth layer. To
generate the summary system action, we simply combine the
selected slot and action from equation 4. Figure 2 presents
the proposed architecture, where the input Bin is passed to
the SDI network which outputs the relevant belief features.
These are then abstracted through DIP processing and fed into
the domain independent policy network that finally outputs
the system’s next action.

To simulate our use case - a large ontology for information
seeking dialogues - we create a unified ontology by selecting
the unique slots from the following 12 domains: Cambridge
Restaurants (CR), Hotels (CH), Shops (CS), Transportation
(CT), and Attractions (CA); San Francisco Hotels (SH) and
Restaurants (SR); Toshiba Laptops (with 6 slots and with 11
slots - L6, L11), Televisions (TV), Video Players (VP), and
External Hard Drives (HD). This results in an ontology with
32 informable slots, 60 user requestable slots, 31 system re-
questable slots, and 101 summary actions. Our unified ontol-
ogy, therefore, is defined through the unique features of ΦD;
thus, we refer toD as the (global) domain and to each di ∈ D
as a sub-domain of the unified ontology.

For our experiments, we needed to modify the user simu-
lator [14] to be able to cope with the new setup. Specifically,

we restricted the simulated users to sample goals from the
original 12 domains, to ensure that database items do exist for
the user’s sampled goal. We train our policy network using a
modified version of the Deep-Q Networks algorithm (DQN)
[15]. Specifically, because the reward sparsity problem is
even more evident in longer multi-domain dialogues and to
mitigate DQN’s tendency to overfit, we implement DQN with
variance-based exploration and exponential-based sampling
of the replay memory [1, 16], with respect to the frequency of
each data point’s reward. Last, we flush the experience pool
after each target network update. These extensions seem to
help make the algorithm more robust in our setting.

4. EVALUATION

We evaluate our approach using the simulator described above
and compare against a baseline and a golden standard. As our
baseline we train a single-domain policy network (SD-DQN)
on the unified ontology without SDI, while for the golden
standard we train the policy network on a multi-domain setup
(MD-DQN), where each sub-domain has been carefully de-
signed and a topic tracker is used to switch between them.

BCM [3], NDQN [4] and similar approaches select a do-
main di for which Qdi(zt, at) = maxd{Qd(zt, at)}, d ∈ D
and train one policy for each domain. We here relax the as-
sumption to search within D, and search within ΦD instead,
allowing us to define new domains that are created from fea-
tures of existing domains. Our architecture can thus handle
domains not included in the set of pre-defined domains D,
and if a sub-domain ψD appears often enough, then we can
optionally save it (D′ = D ∪ ψD) if it meets some criteria.

Input to the sub-domain identifier (SDI) is a window w of
past belief states multiplied by a forgetting factor f ∈ [0, 1]:

Bin = btop(zt)⊕btop(zt−1)f⊕ ...⊕btop(zt−w−1)fw−1 (6)

where Bin ∈ [0, 1]|Z|w and btop(zt) is a vector that holds
the top beliefs for each slot, plus some domain-independent
features (that refer to the dialogue in general). The relevant
belief state features Br therefore are given by:

Br = {b(i)t (zt)|softmax(i)(WM
k xM−1k + cM ) > 0.5} (7)

where the superscript (i) represents the i-th element of
each vector, Wm are the weights of the mth layer (out of M
layers in total) for nodes k, xmk holds the activations of the
mth layer, where x0 = Bin, and cm are the biases of the mth

layer. In our experiments we used a Feed-Forward network to
model SDI (2 layers of 155 nodes, w = 3, and f = 0.85).

4.1. Simulation Results

We conduct a series of experiments during our evaluation.
First, we test the validity of our method by training on a va-
riety of sub-domains and testing on the same conditions at
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Error 0% 5% 10% 15%
6 train, 6 test (no unseen)

SDI 81.3 ±3.8 72.5 ±5.5 63.1 ±9.3 60.2 ±4.5
MD 84.7 ±7.7 75.8 ±13 71.2 ±13 69.6 ±6.6
SD 52.8 ±20 50.1 ±19 49.7 ±18 48.4 ±21

6 train, 7 test (1 unseen)
SDI 84.1 ±5.6 82.0 ±2.5 67.4 ±7.3 67.5 ±12
MD 90.9 ±1.8 79.3 ±9.6 73.1 ±7.4 61.4 ±13
SD 55.1 ±22 48.7 ±20 46.5 ±22 45.9 ±31

8 train, 9 test (1 unseen)
SDI 81.6± 4.4 79.7± 5.7 68.6± 7.2 67.1± 9
MD 74.3± 10 62.6± 21 59.3± 31 57.8± 12
SD 46.3± 28 41.0± 19 42.6± 23 39.4± 24

8 train, 10 test (2 unseen)
SDI 68.0± 11 65.1± 15 64.9± 12 63.1± 19
MD 64.3± 27 61.1± 20 45.0± 29 44.7± 21
SD 47.6± 32 48.4± 29 46.6± 20 41.4± 26

Table 1. Dialogue success rates for the three DMs ± std dev.

various noise levels. At each trial, we sample 6 out of 12 sub-
domains (so the belief features relevant to the non-selected
sub-domains are effectively noise) and out of these 6 sub-
domains the simulated user samples goals for each training
and testing dialogue. Next, we assess the generalizability
of our setup by evaluating the policies on the trained sub-
domains plus extra domains unseen during training. For all
our evaluations, we allow 500 training dialogues for the pol-
icy network, 100 evaluation dialogues and 5 trials for each
noise condition; we randomly select the domains at each trial
and present average results. For the SDI-DQN DM, we pre-
train the SDI network using 750 simulated training dialogues.
Table 1-A shows the results of the matching conditions test
and Table 1-B shows the results on mismatch conditions (av-
eraged over the respective sub-domains for each condition).

From the results presented in Table 1-A, it is evident that
our architecture performs almost at the same level as the
golden standard approach, without the overhead of designing
one ontology for each sub-domain. Regarding the results on
unseen domains (Table 1-B), one reason why the MD-DQN
system does not perform as well as the SDI-DQN is that the
semantic error also affects the topic recognition. SDI-DQN
is able to better handle such errors, because when it does not
have enough (reliable) information, it chooses to let more
belief features through the filter, therefore allowing the policy
network more flexibility (e.g. to ask further questions). Topic
recognition errors do not affect the SD-DQN policy, as it
effectively operates on a single domain (the unified ontology
domain). However, due to the increased size of the domain,
SD-DQN simply needs more data to perform at a level similar
to the other two approaches. Overall, as shown in Table 1-B,
SDI-DQN can better handle unseen domains, as it outper-
forms the other two approaches, and handles noise in a better
way as its performance degrades more gracefully.

As the number of seen domains increases, SDI performs

Task Success Feedback Interactions
SDI-DQN 65.0% 3.67 ±1.1 20
MD-DQN 68.4% 3.5 ±1.51 20
SD-DQN 52.3% 3.12 ±1.54 17

Table 2. Results of the human trials (subdom.: 6 train, 8 test).
Feedback was given in the range 1(v. bad) to 5(v. good).

better on unseen domains because it is more likely that sim-
ilar domains were seen in training. Of course, the power of
SDI-DQN cannot be fully shown here as we cannot have user
goals that are between the pre-defined domains, since we can-
not have database items that are between domains (e.g. some-
thing between a hotel and an attraction). We leave this to be
tested in future work using a large and flexible ontology that
connects to live semantic knowledge bases [17].

4.2. Human Trial Results

To prove that our results transfer to human users, we con-
ducted a small human trial with 6 subjects, as we were not
able to use crowd sourcing services due to Intellectual Prop-
erty restrictions. Table 2 presents the results of the study,
where we evaluated all three DMs for a total of 57 interac-
tions. We trained each DM for 500 episodes in simulation,
for the following 6 domains: CR, CA, L6, SR, SH, CS. Each
participant received a list of tasks, for example “You are look-
ing for a cheap Chinese restaurant in Cambridge.” from the
aforementioned 6 domains plus two extra domains, unseen
in training: CH, L11. At the end of each interaction, partic-
ipants were asked to answer the following question: “How
would you rate the dialogue overall?”. As summarized in Ta-
ble 2, the results of our human trial are in accordance with our
findings in simulation. Specifically, SDI-DQN performs close
to the golden standard (MD-DQN) in terms of task success,
and was rated higher in terms of overall dialogue experience.
SD-DQN again seems to need more training data in order to
perform at the same level as the other DMs.

5. CONCLUSION

We have presented a novel architecture with strong poten-
tial to handle large information-seeking ontologies for multi-
domain dialogues. We have shown that it performs as well
as a carefully designed multi-domain system, and that it can
handle unseen domains and semantic noise better. Our ap-
proach offers great benefits in reducing the cost of ontology
design and expansion, as it only requires generic attributes to
be present, and it automatically learns how to combine them
into meaningful sub-domains. In current work, we are mov-
ing towards complex tasks that require knowledge from vari-
ous domains in order to be completed [17].
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[12] S Young, M Gašić, S Keizer, F Mairesse, J Schatzmann,
B Thomson, and K Yu, “The hidden information state
model: A practical framework for pomdp-based spoken
dialogue management,” Computer Speech & Language,
vol. 24, no. 2, pp. 150–174, 2010.

[13] A Papangelis and Y Stylianou, “Multi-domain spoken
dialogue systems using domain-independent parameter-
isation,” in Domain Adaptation for Dialogue Agents,
2016.

[14] J Schatzmann and S Young, “The hidden agenda user
simulation model,” Audio, Speech, and Language Pro-
cessing, IEEE Transactions on, vol. 17, no. 4, pp. 733–
747, 2009.

[15] V Mnih, K Kavukcuoglu, D Silver, AA Rusu, J Veness,
MG Bellemare, A Graves, M Riedmiller, A K Fidjeland,
G Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[16] T Schaul, J Quan, I Antonoglou, and D Sil-
ver, “Prioritized experience replay,” arXiv preprint
arXiv:1511.05952, 2015.

[17] A Papangelis, P Papadakos, M Kotti, Y Stylianou, Y Tz-
itzikas, and D Plexousakis, “Ld-sds: Towards an ex-
pressive spoken dialogue system based on linked-data,”
in Search-Oriented Conversational AI (SCAI). ACM,

2017.

6068


