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ABSTRACT

Spoken language understanding (SLU) usually requires hu-
man semantic annotation on collected data, but the process is
expensive. In order to make better use of unlabeled data for
robust SLU, we propose an adversarial multi-task learning
method by merging a bidirectional language model (BLM)
and a slot tagging model (STM). As a secondary objec-
tive, the BLM is used to learn generalized and unsupervised
knowledge with abundant unlabeled data and improve the
performance of STM on unseen data samples. We con-
struct a shared space for both tasks and independent private
spaces for each task respectively. Additional adversarial task
discriminator is also used to obtain more task-independent
sharing information. Experiments show that the proposed
approaches achieve the state-of-the-art performance on the
small scale ATIS benchmark and significantly improve the
semi-supervised performance on a large-scale dataset.

Index Terms— Spoken language understanding, Multi-
task learning, Semi-supervised learning, Adversarial task dis-
criminator

1. INTRODUCTION

The Spoken Language Understanding (SLU) module is a
key component of the goal-oriented spoken dialogue system
(SDS), parsing the users’ utterances into the correspond-
ing semantic concepts. For example, the sentence “Show
me flights from Boston to New York” can be parsed into
(fromloc.city name=Boston, toloc.city name=New York)[1].
Typically, it is regarded as a slot filling task, assigning one
predefined semantic slot tag to each word in the utterance [2].

Recent research about statistical slot filling in SLU has
focused on recurrent neural network (RNN) [3] and its ex-
tensions, such as long-short memory networks (LSTM) [4],
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encoder-decoder model [5, 6, 7], etc. These traditional meth-
ods require large amounts of labeled data to achieve a good
performance. However, it is difficult to get sufficient in-
domain labeled data for training because the data annotation
is labor-intensive and time-consuming [8]. When an existing
domain expands or a new one is created, only limited data are
available for supervised learning. In recent years, more and
more applications of SDS have been released along with the
development of the mobile internet, e.g. Apple Siri, Amazon
Alexa, Google Home, Microsoft Cortana etc. Lack of su-
pervised data generally results in a locally optimal solution.
To alleviate the localization, semi-supervised learning can be
used to access to those unseen inputs efficiently.

For semi-supervised learning in SLU, most effective
methods exploit unlabeled data by language modeling. Ce-
likyilmaz et al [9] adopted pseudo labels [10] of unlabeled
data. Similar works like [11, 12] adopted an additional lan-
guage model to improve the accuracy of sequence labeling
tasks. Rei et al shared the whole hidden layers for all tasks
[11], and Matthew et al separated them completely [12]. But
both of them only showed the performance on named entity
recognition, chunking, and POS-tagging tasks.

Inspired by the success of shared-private models [13], we
propose an adversarial multi-task learning method for SLU
which learns generalized and unsupervised knowledge and
regularizes the slot tagging model. The motivation is to tune
the slot tagging model by integrating general language infor-
mation from unlabeled data. Specifically, a bidirectional lan-
guage model (BLM) and a slot tagging model (STM) are com-
bined by a shared space and two task-specific private spaces.
The BLM learns underlying general patterns of semantic and
syntactic composition [11] with abundant unsupervised data,
while the STM obtains supervised knowledge with limited la-
beled data. The shared space is trained for both tasks. Fur-
thermore, we investigate an adversarial task discriminator as
a rival to the shared space. The aim of the task discrimina-
tor is to figure out which task are the shared features trained
for at each time. In order to confuse the task discriminator,
the shared space is forced to extract task-invariant knowledge
and jettison task-specific information. The task discriminator
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is applied on word-level or sentence-level. Unlike Chen et al
who trained their models only for Chinese word segmentation
task by supervised learning on multiple segmentation criteria
with the same data source, we adopt distinctive training ob-
jectives, methods and data sources for each task.

The experiments are conducted on the standard ATIS
corpus and a large-scale dataset which contains about 30-
thousand utterances from three different domains. For the
small dataset, the proposed methods obtain the state-of-the-
art performance compared to published models. For the large
dataset, the models are evaluated on semi-supervised learning
performance with different amounts of labeled data. The re-
sults show that the proposed approaches perform better than
previous methods.

We describe the proposed adversarial multi-task learning
methods in Section 2 and the training procedure in Section 3.
The experimental results and analysis are given in Section 4.
Then Section 5 provides the conclusion of this paper.

2. ADVERSARIAL MULTI-TASK LEARNING

The slot filling is typically considered as a sequence label-
ing problem. Given an input sequence with n words w =
{w1, w2, · · · , wn}, slot filling is to predict the output (slot-
tag) sequence t = {t1, t2, · · · , tn}.

The traditional slot tagging model is only optimised based
on the ground truth of labels. Because the number of each
word in the input is not greater than one and the size of la-
beled data is limited, slot tags actually contribute little to a
generalized SLU model. Inspired by taking language mod-
eling as a supplementary objective [11], we integrate a uni-
directional or bidirectional language model with the slot tag-
ging model. The LM can learn more general patterns of the
semantic and syntactic composition without any additional la-
beled data. The unidirectional LM (ULM) predicts the next
word, while the bidirectional LM (BLM) consists of two sep-
arate ULMs, predicting the next word and the previous word
without share-weighting.

Instead of simply adding an additional parallel output
layer, we investigate an adversarial multi-task model using
the shared-private framework as illustrated in Fig.1. Each
task has its own private space (STM in green, LM in blue)
and shares a joint space (in yellow). The first step is to map
the current word wi to a word embedding ei. A BLSTM is
adopted as the hidden layer for the shared, STM-specific and
BLM-specific space, and an LSTM for ULM-specific space.
Each LSTM takes as input the hidden state from the previous
time step and the word embedding at the current step i:

−→
hki = LSTMk(ei,

−−→
hki−1) (1)

←−
hki = LSTMk(ei,

←−−
hki+1) (2)

where k ∈ {t, l, s}, t refers to slot tagging space, l refers to
language modeling space, and s refers to the shared space.

The task-specific output layer estimates the probability of

words : ...  from     New      York     ...

  tags :  ...    O       B-FromCity   I-FromCity    ...

York from

STM LMSHARED

B-FromCity

Fig. 1. The overview of the adversarial multi-task model. It
contains a shared space (in yellow) and two private spaces
(slot tagging model in green and language model in blue). The
dashed frame is added for BLM. In addition, the task discrim-
inator D is used to force the shared features task-invariant.

the slot tag or word respectively at time frame i:

oti = σ(Wt[
−→
hti;
←−
hti;
−→
hsi ;
←−
hsi ]) (3)

−→
oli = σ(

−→
Wl[
−→
hli;
−→
hsi ]);

←−
oli = σ(

←−
Wl[
←−
hli;
←−
hsi ]) (4)

where [·] is the concatenation operator, Wt,
−→
Wl,
←−
Wl are in-

dependent weight matrices and σ denotes the softmax layer
which predicts a normalized distribution over all possible tags
or words. Then the model can be trained by minimizing the
cross-entropy loss between predictive distribution oi and the
ground truth label (slot tag ti, next word wi+1 or previous
word wi−1).

Inspired by the impressive success of adversarial meth-
ods in deep generative modeling [14], cross-lingual task [15],
and domain adaptation [16], we investigate a task discrimina-
tor to make sure the shared space only contains task-invariant
features. Specifically, the task discriminator takes as input
shared features and predicts whether slot tagging task or lan-
guage modeling task the inputs are trained for. To confuse
the discriminator, the shared space is encouraged to extract
task-invariant features. To make a strong rival to the shared
model, we analyze the task discriminator on word-level and
sentence-level.

The word-level discriminator D(w) calculates the average
of the shared feature hsi = [

−→
hsi ;
←−
hsi ] at each time-frame i af-

ter linear transformation, while the sentence-level discrimina-
tor D(s) selects the most salient feature from the sequence of
shared features. Then they predict the probability of the task
indication y, which equals 1 when w is used for STM training
and equals 0 for LM training.

Pd(y|w; θd, θs) =

{
1
n

∑n
i=1 σ(W

dhsi ) for D(w);

σ(Wdmax1≤i≤n h
s
i ) for D(s)

(5)
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where Wd is a weighting matrix in the task discriminator
space, θd and θs are the parameters in the discriminator and
shared space respectively.

3. TRAINING PROCEDURE

We first present the training objective for each component,
then show the overall training algorithm. The training objec-
tive of D is to maximize the probability of correctly distin-
guishing the task which input features are used for, while the
shared space attempts to confuse the task discriminator:

max
θd
Ld =

∑
(w,y)∈data

logPd(y|w; θd, θs) (6)

min
θs
Ls =

∑
(w,y)∈data

logPd(y|w; θd, θs) (7)

where the dataset data could be labeled or unlabeled.
For slot tagging task and language modeling task, the ob-

jective functions can be computed as:

max
θs,θt
Lt =

∑
(w,t)∈datal

|w|∑
i=1

logPt(ti|wi; θs, θt) (8)

max
θs,
−→
θl

−→
Ll =

∑
w∈data

|w|∑
i=1

logPl(wi+1|wi; θs,
−→
θl ) (9)

max
θs,
←−
θl

←−
Ll =

∑
w∈data

|w|∑
i=1

logPl(wi−1|wi; θs,
←−
θl ) (10)

where datal is the labeled part of data, in which each word
wi is annotated with a slot tag ti. Pt(·|wi) is the probability
over slot tags, and Pl(·|wi) is that over the vocabulary. w0

and w|w|+1 are assigned to the sentence start < s > and the
sentence end < /s > respectively.

Algorithm 1: Adversarial Multi-task Learning for SLU

Input : Labeled training data {(wl, tl)}
Unlabeled data {wu}

Output: Adversarially enhanced slot tagging model
1 Initialize parameters {θs, θt, θl, θd} randomly.
2 repeat

/* Sample from {(wl, tl)} */
3 Train the STM and shared model by Eq.(8).
4 Train the task discriminator and the shared model

by Eq.(6) or Eq.(7) as slot tagging task (y = 1).
/* Sample from {wl} and {wu} */

5 Train the LM and shared models by Eq.(9) (and
Eq.(10) for BLM).

6 Train the task discriminator and the shared model
by Eq.(6) or Eq.(7) as LM task (y = 0).

7 until convergence;

Algorithm 1 shows the overall adversarial training proce-
dure. The discriminator and shared model conduct a minimax
competition through Eq.(6) and Eq.(7) which improve each
other until their feature representations are close enough. The
shared model is encouraged to extract the generalized features
from abundant raw utterances. In addition, Eq.(9) and Eq.(10)
learn underlying semantic and syntactic language knowledge.
Eq.(8) as a traditional supervised learning objective drives the
slot tagging model to perform well on labeled data and trans-
fer the supervised information to unlabeled data.

4. EXPERIMENTS

The proposed model and other methods are first evaluated on
the Air Travel Information System (ATIS) benchmark. Then
we demonstrate the effectiveness of the proposed model on
semi-supervised learning with the different numbers of la-
beled utterances from a large-scale dataset. The experimental
results show that our methods substantially improve over tra-
ditional semi-supervised methods in the slot filling task.

4.1. Experimental Setup

For all architectures, the dimensions of word embeddings and
BLSTM hidden units are set to 100. At each time-frame,
the SLU model takes the current word as input without any
context words. For training, the network parameters are ran-
domly initialized in accordance with the uniform distribution
(-0.2, 0.2) and updated by stochastic gradient descent (SGD).
The dropout with a probability of 0.5 is applied to the non-
recurrent connections for regularization. Different learning
rates are tried by grid-search in the range of [0.008, 0.03] and
keep it for 100 epochs. The F1-scores of slot filling on the
test set whose corresponding models perform best on valida-
tion are reported.

For adversarial training, the task discriminator and the
multi-task model are optimized with the minibatch size of 10.
At each iteration, the slot tagging model is trained on labeled
data by the supervised algorithm, and the language model
is trained on labeled and unlabeled data by self-supervising.
Meanwhile, the shared model and the task discriminator are
trained by a minimax game.

4.2. ATIS Experiment

ATIS includes 4,978 training sentences and 893 test ones
from the only air travel domain. Because a slot may be
mapped to several continuous words, we follow the popular
In/Out/Begin (IOB) representation. The number of different
slot tags is 84 (127 if IOB prefixes are considered). We ran-
domly select 80% from the training sentences as the training
set while the rest as validation [17]. The following methods
are investigated:

STM: It is a simple supervised model, using BLSTM as
the hidden layer for slot filling task [4].

STM+LMe: It pre-trains a language model first, then
initializes the word embeddings of an STM by those of the
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well-trained LM. The word embeddings are updated during
the training process for SLU.

MTLe: It exploits the multi-task learning for STM and
LM. These two tasks share the embedding layer.

MTLe+h: Similar to [11], STM and LM share the em-
bedding and hidden layer.

SPM: It uses the shared-private model for multi-task
learning. Compared to MTLe, it adds a shared hidden space
to improve the performance. Compared to MTLe+h, it adds
private hidden spaces for each task. The output layer in-
puts both shared and private features. Unidirectional SPM
(USPM) contains an STM and a forward LM while bidirec-
tional SPM (BSPM) has an additional backward LM (the
dashed blocks in Fig.1).

SPM+D: It is the exact model illustrated in Fig.1. Com-
pared to SPM, a task discriminator is added to the framework.

SPM1+D: Compared to SPM+D, it eliminates the LM-
specific space and remains others unchanged.

Method STM STM+LMe MTLe MTLe+h
F1U 95.63 95.24 94.78 94.67
F1B 95.61 95.54 94.51

Method SPM SPM+D(w) SPM+D(s) SPM1+D(w)

F1U 95.54 95.28 95.44 95.33
F1B 95.26 95.94 95.52

Table 1. Experimental results (F1-score%) on ATIS dataset.
The superscript of F1 indicates the LM in the model is unidi-
rectional (F1U ) or bidirectional (F1B).

Table 1 shows the performance of these methods on ATIS
corpus. Compared with other methods, BSPM+D(w) achieves
the state-of-the-art performance of 95.94%. The best pub-
lished result is 95.86%, proposed by Zhai et al.[18]. Addi-
tionally, models equipped with BLM mostly perform better
than their counterparts with ULM. It means that considering
both sides of context is beneficial to capture the generalized
feature for slot tagging. Furthermore, we investigate another
update method for the task discriminator. The task indication
of shared features is assigned randomly to confuse the dis-
criminator. In this case, the test F1-score on BSPM+D(w)

declines from 95.94% to 95.28%, which proves the effective-
ness of the proposed method described in Alg.1.

4.3. Large-scale Experiment

Considering the limited size of ATIS and the necessity to
build a slot filling model for multiple domains, we follow
the work of Kurata et al.[5, 18], combining the MIT Restau-
rant Corpus, MIT Movie Corpus [19] and ATIS corpus into a
single large-scale data set, denoted as LARGE. This merged
dataset contains 30,229 training and 6,810 test sentences from
three different domains. The words are assigned to 116 dif-
ferent slot tags (191 with IOB prefix).

For semi-supervised learning, {5k, 10k, 15k} sentences
of training data are randomly chosen as labeled and the rest

as unlabeled. For each labeled set, we randomly select 80%
as training set while the rest as validation. All experiments
are evaluated on the same test set. For example, the 5k set
has 4,000 labeled training, 1,000 labeled developing, 25,299
unlabeled training, and 6,810 test sentences.

Method 5k 10k 15k all
STM 67.25 71.04 73.94 76.60
MTLe 69.57 73.04 75.00 77.24
PSEUDO 69.82 72.55 74.80 -
BSPM 68.46 72.52 75.05 77.52
BSPM+D(w) 71.55 73.67 74.61 77.42
BSPM+D(s) 70.99 73.58 74.22 77.24

Table 2. Experimental results (F1-score%) on LARGE
dataset. {5k, 10k, 15k, all} sets select 5,000, 10,000, 15,000
and 30,229 sentences from the training set as labeled.

The results are illustrated in Table 2. Only bidirectional
methods are shown, which have been proved to be more
effective on ATIS. As a successful method, PSEUDO per-
forms a pipeline in three stages: training an STM with the
labeled data, generating pseudo labels for the unlabeled data
by the pre-trained model, and retain an STM with labeled and
pseudo-labeled data simultaneously [9, 10].

From Table 2, we can see the proposed BSPM and
BSPM+D constantly achieve better performance than other
methods for different labeled sets. Our method improves
significantly (99.9%) over STM on all datasets. Compared
with MTLe, our method has a significant level of 99.9% on
5k set, and of 99.5% on 10k set. However, the improvement
is not significant on 15k set. Similarly, our method improves
significantly (99.8%) over PSEUDO on 5k and 10k set, but
not significantly (over 95%) in 15k set.

The experiments indicate that our semi-supervised learn-
ing model is more efficient when the labeled data is limited
and the data for LM is more sufficient. While BLM exploits
the unsupervised knowledge, the shared-private framework
and adversarial training make the slot tagging model more
generalized and perform better on unseen samples.

5. CONCLUSION

In this paper, we propose an adversarial multi-task learning
method for semi-supervised training on SLU, which allevi-
ates the dependence on labeled data. A bidirectional lan-
guage model is intersected with the slot tagging model by
sharing the joint space and monopolizing a private LM space.
Therefore, the slot tagging model acquires generalized lan-
guage knowledge from the shared space and obtains super-
vised information from its private STM space. In addition, a
task discriminator is used to force the shared space to discard
task-specific information. The proposed methods achieve the
state-of-the-art performance on ATIS benchmark, and signif-
icantly outperform previous models with limited labeled data
on the large-scale dataset.
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