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ABSTRACT

This paper proposes a domain independent approach for extracting
key terms from spoken content based on context and term location
information, or the sentence structures. Once it is trained with data
of enough different domains, it is able to extract key terms in other
unseen domains. This is obviously very attractive because of the
unlimited number of domains over the Internet. Its performance
degrades only very slightly with recognition errors, so very useful
for spoken content. The basic idea here is that the sentence struc-
tures or context and term location information are in general domain
independent, and remain essentially unchanged with recognition
errors. For example, the fact that the key term for the sentence "The
subject of this article is primarily about neural networks” is ’neural
networks” can be extended to any other unseen term other than
“neural networks” in any other unseen domain, and this is more or
less preserved under recognition errors. In the experiments a model
trained with data for five different domains can extract key terms
from data in the sixth unseen domain with very good performance.
Index Terms: key term extraction, long-short term-memory
(LSTM), reinforcement learning, domain independent, spoken
content

1. INTRODUCTION
Key term extraction tries to identify the important terms (words or
phrases) from a document (in text or spoken) which carry the main
subjects or concepts described by the documents. It is very helpful in
many applications, for example, in document classification and clus-
tering [1-3], documents indexing and retrieval [4, 5], and it helps
the user browse and navigate across huge quantities of text [6]. For
spoken content such as voice mails, meeting recordings, broadcast
programs and so on, key term extraction is much more important
than for text content, because it is difficult to show the spoken con-
tent on the screen, and difficult for the users to browse across spoken
content. Also, many of the classified, clustered or retrieved spoken
documents may not be desired for the user because of recognition
errors. These spoken documents can be discriminated with the key
terms [7].

Most frequently used key term extraction approaches can be
either unsupervised or supervised [8—11]. The unsupervised ap-
proaches usually consider key term extraction as a ranking problem
by simply ranking the terms in the document using some statisti-
cal features (e.g. tf-idf [12, 13]), semantic features (e.g. topic en-
tropy [14]) or similar, or plus some re-ranking approach (e.g. graph-
based algorithm [15-20]), and then selecting those terms with the
highest ranking as the key terms. These approaches are usually good;
but with relatively low accuracy.

On the other hand, supervised approaches very often considers
key term extraction as a sequence classification problem [21-26].
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The key terms are simply the labels of the classes for the document.
So this approach is to classify every document to the correct classes
labeled by the key terms. These approaches usually have higher ac-
curacy, but inevitably limited by the training data. For example, key
terms not existing in the training data cannot be obtained, because
a classification model cannot classify something to an unseen class.
This issue is important. Practically, because very naturally we need
to extract key terms from documents (text or spoken) in unseen do-
main, while there exist essentially unlimited number of domains over
the Internet.

In this paper, we present a novel approach for supervised key
term extraction from both text or spoken content based on the con-
text and term location information in the sentences or utterances, or
the sentence or utterance structures. This means the model learns
to identify key terms from sentence structures, which is indepen-
dent of domain, so the model should be domain independent. For
example, if the machine was trained that for the sentence “The sub-
ject of this article is primarily about neural networks” the key term
is “neural networks”, then it may learn that any term following ...
this article is ... about” has higher probability to be a key term than
other words in the sentence, whether the model has seen that term
or that domain before or not. So this approach not only achieves the
higher accuracy for supervised approaches, but solves the problem
of unseen domains for supervised approaches. We also show this ap-
proach is equally useful for text and spoken content when applied on
documents with and without recognition errors. This is because the
context and term location information remain essentially unchanged
with recognition errors.

2. PROPOSED APPROACH
The proposed approach is shown in Figure 1. The basic model in
the left half will be presented in section 2.1, while the reinforce-
ment learning in the right half which can be used to improve the
performance will be discussed in section 2.2. In section 2.3 we will
describe the way we test the model for spoken content by simulating
the speech recognition errors.

2.1. Basic model
The basic model is in the left part of Figure 1. The recurrent neural
networks (RNN) are very useful in capturing information from se-
quential inputs. Long short-term memory (LSTM) [27,28] networks
can be considered as an extension of RNN. Here we use LSTM in
the basic model to learn the relationships between sentence struc-
tures including context and term locations and the key terms in long
sequences of words.

In Figure 1, X = [z1, 22, ..., zn] is the input sentence with
N words, where x; is the i-th word. V' = [v1,v2,...,uN] is the
feature vector sequence of the input X, where v; is the feature vector
of x; which is the concatenation of some word data and the word
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Table 1. Basic information for the data set of the six domains considered

Domain biology | cooking | travel | robotics | crypto | DIY
number of documents | 13196 15404 19279 2771 10432 | 25918
vocabulary size 38257 24313 32072 17160 | 26792 | 32106
number of key terms 678 736 1645 231 392 734
Basic Model Reinforcement Learning is a;j. All those training pairs are then used to re-train the basic
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Fig. 1. The proposed model, basic model on the left and reinforce-
ment learning on the right.

embeddings. The target Y = [y1, y2, ..., yn| has the same length as
the input sentence, y; = 1 if x; is a key term, otherwise it equals
to 0. In other words, the target is the prediction of whether each
term position in the input sentence corresponds to a key term or not.
The output O = [01, 02, ..., on] is the output of the model. During
training, the model tries to have O as close to Y as possible. In the
inference stage, we will set a threshold th, such that the word x; is
taken as a key term if o; > th.

2.2. Reinforcement learning

It is not easy to train the basic model using conventional training
mechanisms. The target contains much more 0’s than 1’s because
most of the words are not key terms. As a result the conventional ac-
curacy is not a good objective function for the training here. Instead
we should be focused on how many correct key terms are identified,
which means maximizing the F-measure is a better training target.
However, F-measure is not differentiable, so it cannot be taken as the
loss function. This is why reinforcement learning is used as shown
in the right part of Figure 1.

With the basic model trained as mentioned above, for every input
word x; of the input X; = [x1, 2, ...,Zn] We have a output 0; €
[0, 1]. We can thus define a random variable z; for it, which can be
simply 1 or 0, but with a probability distribution

Prob(z; =1) =o;
Prob(z; =0)=1—o0;

We can then sample this distribution to obtain a sample value Z;.
All these samples for the input sentence X = [z1, z2, ..., zn] form
an N-dimensional output sample vector

ey

Z =71, %2, ..3N]. )
In this way we can obtain for each input sentence X a total of

k output sample vectors 21, Zz, . Zk, each Zj is in the form of

Eq. 2. For each pair of input X and output Zj we can evaluate
the F-measure «;j. The F-measure evaluation corresponds to the
environment and the result o; to the reward for the reinforcement
learning. This defines a new training pair (X, ZJ) whose weight

model. Note that for each input X there are k output sample vectors
21, Zg, s Zk whose weights are a1, iz, ..., a. So we have a total
of k training pairs (X, Z;)j—1 .2, each with weight ;. There-
fore training pairs with higher F-measures will be weighted higher,
and the model will learn more from them. In this way, the model
naturally maximizes not only the accuracy but also the F-measure.

2.3. Speech recognition error simulation
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Fig. 2. A partial list of the confusion matrix obtained from Lib-
rispeech

The above approach is in general equally applicable to both text
context and transcriptions of spoken content. Because it is not easy
to find spoken context with labeled key terms of quality enough for
training and testing, here we try to simulate transcriptions of spoken
content by generating recognition errors, although there is a gap be-
tween the simulation and the real utterance. As the result, this way
would provide us an indicator to let us know the results of our model
applied on the spoken content. We model the recognition process
as a transformation F' : X —— X', where X = [z1,%2,...,TN]
is the original correct word sequence for a spoken document and its
corresponding recognition transcription is X' = [z}, x5, ..., T'y].

We can model the recognition process for a given recognizer
with a confusion matrix between any two words in the vocabulary.
By aligning the original text and the transcription from the recog-
nizer, we can evaluate the probability that a word b is recognized as
another word a
P(alb) = count(x’ = a;x =b)

> count(xz’ = m,x = b)

3

where a, b, m are all words, and count(z’ = a;z = b) is count
of word b being recognized as word a. The summation is over all
words m in the vocabulary. Deletion and insertion can be equally
handled by defined a “blank” as an extra word in the vocabulary.
Note that this matrix is not symmetric. This matrix can be trained
for any specific recognizer using its input/output data.

A partial list of some examples for the above confusion matrix
trained on Librispeech [29] is in Figure 2, where the WER is 5%.
Seven words are shown in Figure 2, clearly divided into two groups,
[hair, her,your] and [want, once, one, won]. The words in the
same group have higher probabilities to be recognized as one an-
other. For example, when a word “her” exists in the transcription,
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Table 2. The precision, recall and F-measure for DIY domain and F-measures for all other five domains when the key terms were extracted
from an unseen domain with a model trained by the data sets for other five domains. All data are completely correct with out recognition
errors. Row (a) for oracle, (b)(c) for unsupervised baselines, (d) for supervised baselines, and (e)(f)(g) for proposed approach.

Test Domain DIY biology [ cooking | travel [ robotics | crypto
Models Precision | Recall | F-measure F-measure

(a) Oracle 0.794 0.593 0.679 0.359 0.672 0.578 0.651 0.684
(b) Tf-idf sorting 0.176 0.271 0.213 0.095 0.249 0.206 0.193 0.224

Baseline | (c) Text Rank 0.181 0.213 0.195 0.084 0.242 0.154 0.151 0.178
(d) Classification LSTM 0.283 0.282 0.282 0.208 0.221 0.243 0.180 0.222

Basic (e) embedding only 0.229 0.243 0.235 0.102 0.224 0.211 0.185 0.237

Proposed (f) plus word data 0.241 0.245 0.242 0.103 0.285 0.229 0.202 0.252
(g) Basic (f) plus RL 0.242 0.312 0.272 0.113 0.318 0.215 0.246 0.255

very often it is "her” in the original utterance. If it is incorrectly rec-
ognized, it is more likely to be “your” while less likely to be “hair”.
For a word “once” in an utterance to be recognized, very often it
is correctly transcribed. If it is incorrectly recognized, it is more
likely to be transcribed as “one” but less likely to be transcribed as
“won” or "want”. This means the confusion matrix jointly reflects
the functions of acoustic and language models. For example, ’her”
is phonetically closer to "hair” but linguistically closer to “your”.

3. EXPERIMENTS
In this section we describe the details of the experiments. The

experimental setup, baselines and results are respectively in sec-
tions 3.1, 3.2 and 3.3.

3.1. Experimental setup

3.1.1. Data sets

The data set used in this word was parsed from StackExchange', a
website for Q&A community, where users post their questions and
answers plus some key terms for the questions and answers. The data
set contains six domains: biology, cooking, travel, robotics, crypto
and DIY. The basic information including number of documents, vo-
cabulary size and number of key terms for each of the data set is
listed in Table 1. Every document here has a title and the content,
labeled with one or more key terms.

Below we choose one domain to be the test set and the others
to be the training set in order to evaluate the ability of the proposed
approach to extract the key terms in an unseen domain not existing
in the training set. This process was repeated for each domain taking
as the test set.

3.1.2. Preprocessing

The documents are very noisy, for example, with Html tags, URLs,
non-english words, symbols, or equations. We filtered out these
noisy parts and transformed all words to lowercase.

3.1.3. Feature extraction

The feature representing every word consisted of two parts. The
word data and the word embedding. The former of a word contained
the term frequency (tf), the inverse document frequency (idf), tf-
idf, the word counts in the domain, and the position of the word in
the sentence. The word embedding was obtained via Word2vec [30]
which compressed each word into a vector of 200 dimensions. These
two parts are then concatenated to represent each word.

3.2. Baselines
The baseline used in the experiments included both unsupervised
and supervised approaches as introduced below.

"https://stackexchange.com/

3.2.1. Unsupervised baselines

There are two unsupervised baselines used here. The first was tf-idf
sorting. All words of a document were sorted based on the tf-idf
values, and the top-N words on the list were regarded as key terms.
The second was TextRank [16], which performed random walk over
a graph of words constructed based on the relationship among words,
very similar to PageRank, where the co-occurrence features were
used to estimate the relationship between two words.

3.2.2. Supervised baselines

Classification LSTM [26] was taken as the supervised baseline in
this work. This method used a sequential classification model which
classified each input document as a sequence to its class labeled by
a key term using LSTMs. So the test data had to be in the same
domain as the training set. The machine cannot classify a document
to an unseen class.

0.3
0.25 N\
< 4
:g 02 Proposed: Basic Model
S
) . .
£0.15 1 Proposed: Basic Model plus RL
—Baseline: Classification LSTM
0.1 4 —Baseline: TextRank
0.05 T T T
0.1 0.2 0.3 0.4 0.5

Recall

Fig. 3. Precision-Recall curve for the DIY domain with a model
trained with the other five domains. No recognition errors. Those
data listed in Table 2 are also marked.

3.3. Experimental results

3.3.1. Without recognition errors

The proposed model was trained with five domains of the corpus,
then tested with the sixth domain. So the test domain was unseen
to the model. When the test set included only reference text with-
out recognition errors, the results for all the six domains taken as
tested domain are listed in Table 2. The first domain (DIY) in the
first column also has the precision and recall rates shown in the Ta-
ble, with the precision-recall curves also plotted in Figure 3. The
oracle results in row (a) were obtained by simply picking up those
correct key terms appearing in the document. The recall is not 1.0
for Oracle because the reference key terms may not appear in the
documents. The precision is not 1.0 for Oracle because the preci-
sion was set to zero for those documents for which no key term was
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Table 3. F-measure for supervised classification LSTM (part (A)) and proposed approach (part (B)) under different WERSs for the six domains

Model WER DIY biology cooking travel robotics crypto

(A classifi 0% | 0.282 - | 0.208 - | 0.221 - | 0.243 - | 0.180 - | 0.222 -
cation  LSTM 5% | 0203 | -28% | 0.098 | -53% | 0.161 | -27% | 0.135 | -44% | 0.135 | -25% | 0.130 | -41%
(Baseline, row 10% | 0.201 | -29% | 0.094 | -55% | 0.155 | -30% | 0.126 | -48% | 0.134 | -25% | 0.130 | -41%
(d) of Tab,le 2) 20% | 0.203 | -28% | 0.092 | -56% | 0.151 | -32% | 0.127 | -47% | 0.133 | -26% | 0.123 | -45%
30% | 0.123 | -56% | 0.091 | -56% | 0.156 | -29% | 0.119 | -51% | 0.133 | -26% | 0.126 | -43%

0% | 0.272 - | 0.113 - | 0318 - | 0.215 - | 0.246 - | 0.255 -

(B) Basic () 5% | 0.272 -0% | 0.113 -0% | 0.315 | -09% | 0.214 | -0.5% | 0.239 | -2.8% | 0.255 -0%
plus RL (row | 10% | 0.271 | -04% | 0.113 -0% | 0.315 | -09% | 0.214 | -0.5% | 0.236 | -4.1% | 0.254 | -0.4%
(g) of Table 2) 20% | 0.267 | -1.8% | 0.112 | -0.9% | 0.311 | -2.2% | 0.213 | -0.9% | 0.235 | -4.5% | 0.254 | -0.4%
30% | 0.267 | -1.8% | 0.111 | -1.7% | 0.292 | -82% | 0.198 | -7.9% | 0.233 | -53% | 0.244 | -4.3%

obtained because all reference key terms do not appear in the docu-
ments. Rows (b)(c) are for the unsupervised baselines, and row (d)
for the supervised baseline trained with completely in-domain data.
Rows (e)(f) are for the proposed basic model on the left of Figure 1,
with word embedding only or plus the word data used in the word
features. Row (g) is then for row (f) plus reinforcement learning.

In Table 2, from rows (b)(c), we can see the unsupervised base-
lines had lower precision. By comparing rows (d) with (b)(c), we can
see the supervised classification LSTM was significantly better than
the unsupervised baselines in three out of the six domains. By com-
paring rows (e)(f) we see the word data are certainly useful in our ba-
sic model. Comparing rows (f)(g), we can find out the reinforcement
learning can improve the performance in most cases, and the im-
provement was significant for at least three out of six domains (DIY,
cooking, robotics). By comparing rows (f)(g) with (b)(c), we find out
that the proposed approach outperformed unsupervised baselines in
all domains. From rows (d)(f)(g), we see that the proposed models
performed better than the supervised classification LSTM for three
out of the six domains (cooking, robotics, crypto), even though the
proposed models didn’t see the test domain data but the supervised
classification LSTM did. Even for the other three domains (biology,
travel, DIY), the proposed models for unseen domains are not too far
from the supervised classification LSTM trained with the in-domain
data for two of the tree domains (travel, DIY). In any case the pro-
posed models didn’t see the in-domain data but the supervised clas-
sification LSTM did. These verified the proposed approach was able
to extract key terms in unseen domain very well. These results also
verified that in the proposed approach the key terms are extracted
based on the context information or sentence structures sentence by
sentence individually without considering the whole document, and
that is reasonably good.

From the precision-recall curves for the DIY domain in Figure 3,
we see the supervised classification LSTM performed the best but
was trained with completely in-domain data. The proposed basic
model plus reinforcement learning is only slightly worse than the
classification LSTM but very close, however it didn’t see any test
domain data before, and was trained with the out-domain data only.
The basic model or unsupervised TextRank is obviously worse.

3.3.2. With recognition errors

For spoken content being transcribed by speech recognition, we tried
to perform the experiments on the same test data set but with sim-
ulated recognition errors. We trained a confusion matrix P(a|b) as
explained in section 2.3 using Liberispeech whose WER is 5%. In
this case we evaluated the probability that each word b was incor-
rectly transcribed, some higher (e.g. 8%) and some lower (e.g. 1%)
while the overall WER was 5%. In each case those 1% or 8% of in-
correctly transcribed words b were randomly assigned to other words

a based on P(a|b) as obtained. We also simulated the case for other
WER’s such as 3 - 5% where (3 is a real number. In this case those
words incorrectly recognized with probability 8% were assumed to
be incorrectly recognized with probability 3 - 8% and randomly as-
signed to other words based on the same confusion matrix P(al|b)
and so on. The results are in the Table 3 for all the six domains for
word error rate (WER) ranging from 5% to 30%, comparing the pro-
posed basic model plus reinforcement learning (row (g) in Table 2 )
with the supervised classification LSTM (row (d) of Table 2).

From part (A) of Table 3 for the supervised classification LSTM,
we can see that with recognition errors at WER ranging from 5% to
30%, the performance was seriously degraded by 25% to 60% in
all domains in all cases, and the degradation was more serious with
higher WER. On the other hand, in part (B) for the proposed ap-
proach, the performance was only very slightly degraded with recog-
nition errors (by 0-8.2%). These are also shown in Figure 4 (a)(b)
for two domains, DIY and cooking. This is reasonable, because
the proposed approach extracted the key terms based on the con-
text information or sentence structures, which remains essentially
unchanged with recognition errors as long as the WER is not too
high.

03 (a) DIY (b) cooking
0.30
0.25
2
Z 0.20
g
g 0.15 [ Supervised Baseline:
= 0.10 Classification LSTM
Proposed:
0.05 Basic (f) plus RL
0.00 0 5 10 20 30 0 5 10 20 30
WER (%) WER (%)

Fig. 4. F-measures under different WERs for (a) DIY and (b) cook-
ing domain

4. CONCLUSION

A novel domain independent approach to extract key terms from spo-
ken content based on context and term location information in the
utterances is proposed in this paper. In other words, once trained
with data of enough different domains, it can extract key terms in
other unseen domains. This is extremely attractive because there ex-
ist unlimited number of domains over the Internet. It is also shown
that the performance of this approach degrades only very slightly
with speech recognition error, this is because sentence structure or
context and term location information are in general domain inde-
pendent, and remain essentially unchanged with recognition errors,
therefore, specially useful for key term extraction from spoken con-
tent.
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