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ABSTRACT

This paper describes neural ConfNet classification, a novel
fully neural network based spoken utterance classification
method that uses word confusion networks (ConfNets). Our
motivation is to establish a spoken utterance classification
method that can precisely understand natural language and
robustly handle automatic speech recognition (ASR) errors.
Remarkable progress has been made in neural networks for
accurate modeling, however, most previous methods could
not handle ASR errors since they were developed for ref-
erence transcriptions. Therefore, in our work we utilized
ConfNets, which are compact and efficient graph representa-
tions of ASR hypotheses. Our idea is to regard the ConfNet as
a sequence of bag-of-weighted-arcs and introduce a mecha-
nism that converts the bag-of-weighted-arcs into a continuous
representation called a modified weighted sum representation.
This enables us to flexibly connect ConfNets to arbitrary
model structures developed for reference transcriptions. We
demonstrate the effectiveness of the neural ConfNet classifi-
cation in dialogue act, extended named entity, and question
type classification tasks.

Index Terms— Confusion networks, neural networks,
spoken utterance classification, robustness to ASR errors

1. INTRODUCTION

Spoken utterance classification tasks such as dialogue act [1],
domain [2], intent [3], and question type [4] classification are
essential for modern spoken dialogue systems [5]. Spoken ut-
terance classification determines a label from an input utter-
ance. In order to enhance the spoken utterance classification
performance, both accurate modeling to understand natural
languages and robust modeling of automatic speech recogni-
tion (ASR) errors are needed.

For accurate modeling, deep learning technologies have
recently attracted much attention. Neural spoken utterance
classification, which is a fully neural network based mod-
eling method, demonstrates strong performance without in-
troducing manual feature engineering. So far, various model
structures such as long short-term memory recurrent neural
networks (LSTM-RNNs) [6–8], convolution neural networks

[9,10], and advanced networks [11–13] have been introduced
for improving classification performance.

Robust modeling of ASR errors has been also examined
in various spoken language processing tasks including spoken
utterance classification. It is known that classification perfor-
mance deteriorates seriously due to ASR errors. Therefore,
spoken utterance classification modules are often trained us-
ing ASR 1-bests rather than reference transcriptions. In ad-
dition, n-best lists [14–17], word lattices [18, 19], and word
confusion networks (ConfNets) [20–23] have been utilized
for taking whole ASR hypotheses into account.

However, there have been few studies on combining neu-
ral spoken utterance classification with robust modeling of
ASR errors. Recently, lattice based neural spoken utterance
classification methods have been proposed for addressing
ASR errors [24–26]. Lattices have also been applied for
neural machine translation [27, 28]. One weakness is that
the model structure must be specific to lattices since lattices
have complex graph structure. In other words, lattices can-
not be connected to various network structures developed for
reference transcriptions, i.e., simple word sequences.

This paper proposes a neural ConfNet classification
method that can flexibly choose various model structures.
ConfNets are more compact and efficient graph representa-
tions of ASR hypotheses than lattices. The most attractive
property is that ConfNets can be represented as a linear se-
quential graph. Our idea is to regard a ConfNet as a sequence
of bag-of-weighted-arcs and introduce a mechanism that con-
verts the bag-of-weighted-arcs into a continuous representa-
tion. This enables our proposed method to adopt arbitrary
network structures introduced in conventional neural spoken
utterance classification and to compose a fully neural network
based modeling using ConfNets.

For proposed neural ConfNet classification, we introduce
two modeling methods to convert bag-of-weighted-arcs into
a continuous representation. One is weighted sum repre-
sentation, in which all word continuous representations are
weighted by their posterior probability and then summed.
The other is modified weighted sum representation using a
self-attention mechanism [11, 12]. The representation can
take the importance of words into account while considering
their posterior probabilities.
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Fig. 1. Model structures of neural spoken utterance classifi-
cation.

We demonstrate the effectiveness of neural ConfNet clas-
sification in three different spoken utterance classification
tasks, i.e., dialogue act, extended named entity [29], and
question type classification.

2. NEURAL SPOKEN UTTERANCE
CLASSIFICATION

Spoken utterance classification is a problem that determines a
label l ∈ l1, · · · , lK of a given utterance W = w1, · · · , wT .
Neural spoken utterance classification, which is a fully neural
network based modeling method, can model P (l|W,Θ) in an
end-to-end manner where Θ is the model parameter.

Neural spoken utterance classification is also utilized for
an n-best list based classification [26]. The n-best list includes
multiple sentences generated from an ASR process. A condi-
tional probability of a label l given an n-best list L is calcu-
lated as:

P (l|L) =
∑
W∈L

P (l|W,Θ)P (W), (1)

where P (W) denotes the posterior probability of W that can
be calculated during an ASR process.

2.1. Modeling

Various model structures are suitable for neural spoken ut-
terance classification. In this paper we introduce two model
structures, sequence-to-one LSTM-RNN and self-attention
BLSTM-RNN [11, 12]. Figure 1 shows their detailed model
structures. An input is an utterance W , and an output is pre-
dicted probabilies o. The k-th dimension in o corresponds to
P (lk|W,Θ).

For both model structures, each word in an input utterance
W is first converted into a continuous representation. The
continuous representation of the t-th word is defined as:

wt = EMBED(wt;θw), (2)

where EMBED() is a linear transformational function to embed
a word to a continuous vector and θw is the trainable parame-
ter.

2.1.1. Sequence-to-One LSTM-RNN

In sequence-to-one LSTM-RNN, each word continuous rep-
resentation is converted into a hidden representation that sum-
marizes past context information using LSTM-RNN. The hid-
den representation for the t-th word is calculated as:

ht = LSTM(w1, · · · ,wt;θh), (3)

where LSTM() is a function of the unidirectional LSTM-RNN
layer and θh is the trainable parameter. In this case, the entire
utterance information can be embedded into hT . In an output
layer, predicted probabilities are produced by:

o = SOFTMAX(hT ;θo), (4)

where SOFTMAX() is a transformational function with softmax
activation and θo is the trainable parameter. To summarize the
above, Θ corresponds to {θw, θh, θo}.

2.1.2. Self-Attention BLSTM-RNN

In self-attention BLSTM-RNN, each word representation is
also converted into a hidden representation that takes neigh-
boring context information into consideration. The hidden
representation for the t-th word is calculated as:

ht = BLSTM(w1, · · · ,wT , t;θh), (5)

where BLSTM() is a function of the BLSTM-RNN layer. In
addition, the hidden representations are summarized as a sen-
tence representation using a self-attention mechanism that can
consider the importance of individual hidden representations.
The sentence continuous representation s is calculated as:

zt = tanh(ht;θz), (6)

s =

T∑
t=1

exp(z⊤
t z̄)

ΣT
j=1 exp(z

⊤
j z̄)

ht, (7)

where tanh() is a non-linear transformational function with
tanh activation and θz is the trainable parameter. z̄ is a train-
able context vector, which is used for measuring the impor-
tance of individual hidden representations. In an output layer,
predicted probabilities are produced by:

o = SOFTMAX(s;θo). (8)

In this modeling, Θ corresponds to {θw, θh, θz, z̄, θo}.

2.2. Optimization

The parameter is optimized by minimizing cross entropy loss
between a reference probability and an estimated probability:

Θ̂ = argmin
Θ

−
∑
W∈D

∑
l

ôl
W log ol

W , (9)

where ôl
W and ol

W are respectively a reference probability
and an estimated probability of label l for W . D denotes the
training data set.
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3. NEURAL CONFNET CLASSIFICATION

This section describes our proposed neural ConfNet classifi-
cation method, which is a fully neural network based mod-
eling method using ConfNets. It can model P (l|A,Θ) in an
end-to-end manner where A is a ConfNet.

The ConfNet is a compact representation of ASR hy-
potheses that aligns a set of words for each position [20]. The
ConfNet can be regarded as a sequence of bag-of-weighted-
arcs a1, · · · , aT . The t-th bag-of-weighted-arcs is repre-
sented as:

at = {w1
t , · · · , w

It
t }, {P (w1

t ), · · · , P (wIt
t )}, (10)

where It means the number of words in at, wi
t is the i-th word,

and P (wi
t) is a posterior probability of wi

t. Note that a “null”,
which means an empty word, is also regarded as a word in the
bag-of-weighted-arcs.

3.1. Modeling

In order to connect ConfNet to neural network based mod-
eling, we convert each bag-of-weighted-arcs into a continu-
ous representation. The continuous representation of at is de-
noted as at. In this case, neural ConfNet classification can be
structured by combining continuous representations of bag-
of-weighted-arcs with model structures introduced in neural
spoken utterance classification methods, i.e., sequence-to-one
LSTM-RNN or self-attention BLSTM-RNN. In fact, neural
ConfNet classification can be derived by replacing wt in Eq.
(3) or (5) with at. In the following sections we introduce
two modeling methods, i.e., weighted sum representation and
modified weighted sum representation, for producing contin-
uous representations of bag-of-weighted-arcs.

3.1.1. Weighted Sum Representation

The simplest of the methods is weighted sum representation,
in which all word continuous representations are weighted by
their posterior probability and then summed. The weighted
sum representation of at is calculated by:

at =

It∑
i=1

P (wi
t)EMBED(w

i
t;θw), (11)

where EMBED() has the same function as in Eq. (2).

3.1.2. Modified Weighted Sum Representation

The posterior probability is not relevant to the importance
of each word for addressing the target classification tasks.
Therefore, we modify weighted sum representation by using
a self-attention mechanism. The modified weighted sum rep-
resentation of at is calculated by:

qi
t = P (wi

t)EMBED(w
i
t;θw), (12)
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Fig. 2. Model structure of neural ConfNet classification.

vi
t = tanh(qi

t;θv), (13)

at =

It∑
i=1

exp(vi⊤
t v̄)

ΣIm
j=1 exp(v

i⊤
t v̄)

qi
t, (14)

where θv is the trainable parameter and v̄ is a trainable con-
text vector, which is used for measuring the importance of
individual words. Figure 2 shows a model structure that com-
bines self-attention BLSTM-RNN with modified weighted
sum representation. In this case, a model parameter Θ means
{θw, θv, v̄, θh, θz, z̄, θo}.

3.2. Optimization

Neural ConfNet classification can be also optimized by mini-
mizing cross entropy loss between a reference probability and
an estimated probability:

Θ̂ = argmin
Θ

−
∑
A∈D

∑
l

ôl
A log ol

A, (15)

where ôl
A and ol

A are respectively a reference probability and
an estimated probability of label l for A.

4. EXPERIMENTS

4.1. Conditions

Our experiments examined three different spoken utterance
classification tasks, i.e., dialogue act (DA), extended named
entity (ENE) [29, 30], and question type (QT) classification.
For example, the task of ENE classification is to obtain a re-
quested ENE type for a question. That is, for “what is the
highest mountain in the world?”, the ENE to be detected is
“Mountain”. The data sets were individually divided into
training (Train), validation (Valid), and test (Test) sets. We
added annotated labels to reference transcriptions. In order to
investigate various ASR conditions, audio files were produced
from the reference transcriptions using a homemade speech
synthesizer. They were contaminated by noise for degrading
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Table 2. Experimental results: utterance classification accuracy (%) for test sets.
Sequence-to-One Self-attention

Data type Data type Continuous representation LSTM-RNN BLSTM-RNN
Condition in training in testing of bag-of-weighted-arcs DA ENE QT DA ENE QT

(a). Oracle Reference Reference - 63.7 65.7 82.9 63.5 65.5 82.8
(b). Condition A Reference 1-best - 58.8 57.0 79.1 57.8 57.2 79.5
(c). 1-best 1-best - 61.6 60.6 82.5 61.9 60.5 82.2
(d). 1-best 50-best - 61.8 62.3 82.7 61.8 62.3 82.4
(e). ConfNet ConfNet Weighted sum 62.7 62.7 82.7 62.9 63.0 82.7
(f). ConfNet ConfNet Modified weighted sum 63.4 64.0 82.8 63.6 65.0 83.0
(g). Condition B Reference 1-best - 53.2 41.8 69.1 52.0 42.0 69.3
(h). 1-best 1-best - 58.8 49.6 79.0 58.4 50.1 78.8
(i). 1-best 50-best - 59.8 53.2 79.6 59.3 54.2 79.0
(j). ConfNet ConfNet Weighted sum 60.2 55.0 79.7 60.7 55.5 80.2
(k). ConfNet ConfNet Modified weighted sum 61.2 57.0 80.1 61.5 58.2 80.7

Table 1. Experimental data sets.
DA ENE QT

# of utterances in Train 26,220 26,220 26,220
# of utterances in Valid 2,622 2,622 2,622
# of utterances in Test 2,623 2,623 2,623
WER in Oracle (%) 0.0 0.0 0.0
WER Condition A (%) 11.8 14.2 14.0
WER Condition B (%) 22.9 28.9 28.1
# of labels 28 168 17
Label examples Greeting Age True/false

Apology Company Quantity
Thanks Country Name

ASR performance. ASR hypotheses including n-bests and
ConfNets were generated using a homemade speech recog-
nizer which vocabulary size was 500K. Table 1 shows details
of the data sets and word error rate (WER) in each condi-
tion. Note that utterances in each task was completely differ-
ent from each other although the number of utterances was
equal to each other.

For evaluation, we prepared sequence-to-one LSTM-
RNNs and self-attention BLSTM-RNNs for several setups.
For both modeling methods, word continuous representation
size and LSTM unit size were respectively unified as 128
and 200. In training and testing for oracle condition and
each ASR condition, we introduced reference transcriptions,
1-bests, 50-bests, and ConfNets. The 50-bests based testing
was followed by Eq. (1). In these setups, words that appeared
once or less in the training data sets were treated as unknown
words. The optimization algorithm we used was Adam. The
training epoch was stopped when the validation loss was not
improved five consecutive times.

4.2. Results

Table 2 shows experimental results in terms of utterance clas-
sification accuracy for test sets. The proposed neural ConfNet
classification is shown in (e), (f), (j), and (k). In each setup,
five models were constructed by varying an initial parameter

and averaged accuracy was evaluated.
The oracle condition (a), which can introduce reference

transcriptions in both training and testing, demonstrated
higher performance than most ASR conditions. On the other
hand, reference transcription based training was not suitable
for classifying 1-bests. In particular, the classification per-
formance in (g) was substantially degraded compared to the
oracle condition performance. Better classification perfor-
mance was obtained for the 1-best based training than for
the reference based training. Since 50-best based testing can
take multiple ASR hypotheses into consideration, it provided
better classification performance than the 1-best based test-
ing. Furthermore, the proposed neural ConfNet classification,
which used ConfNets in both training and testing, provided
performance superior to that of n-best based neural spoken
utterance classification. These results confirm that neural
ConfNet classification can effectively take multiple ASR hy-
potheses into consideration. They also confirm that it can
achieve improved performance regardless of upper network
structures. In each task, the best results were achieved by
(f) and (k), where modified weighted sum representation was
introduced. This suggests that it is important to consider
word importance in bag-of-weighted-arcs for neural ConfNet
classification.

5. CONCLUSIONS

In this paper, we proposed a neural ConfNet classification that
can precisely understand natural languages and robustly han-
dle ASR errors. By introducing a mechanism that converts
a sequence of bag-of-weighted-arcs to continuous representa-
tions, we enable the method to combine ConfNets with arbi-
trary network structures introduced in neural spoken utterance
classification. Experimental results showed that the neural
ConfNet classification method using modified weighted sum
representation significantly outperformed n-best based neural
sentence classification methods regardless of upper network
structures.
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