
(ALMOST) ZERO-SHOT CROSS-LINGUAL SPOKEN LANGUAGE UNDERSTANDING

Shyam Upadhyay∗1 Manaal Faruqui2 Gokhan Tür2 Dilek Hakkani-Tür2 Larry Heck†3

1 University of Pennsylvania, Philadelphia, PA
2 Google Research, Mountain View, CA

3 Samsung Research, Mountain View, CA
shyamupa@seas.upenn.edu, {mfaruqui, gokhant, dilekh}@google.com, larry.heck@ieee.org

ABSTRACT

Spoken language understanding (SLU) is a component of goal-
oriented dialogue systems that aims to interpret user’s natural lan-
guage queries in system’s semantic representation format. While
current state-of-the-art SLU approaches achieve high performance
for English domains, the same is not true for other languages. Ap-
proaches in the literature for extending SLU models and grammars
to new languages rely primarily on machine translation. This poses
a challenge in scaling to new languages, as machine translation
systems may not be reliable for several (especially low resource)
languages. In this work, we examine different approaches to train
a SLU component with little supervision for two new languages –
Hindi and Turkish, and show that with only a few hundred labeled
examples we can surpass the approaches proposed in the literature.
Our experiments show that training a model bilingually (i.e., jointly
with English), enables faster learning, in that the model requires
fewer labeled instances in the target language to generalize. Qual-
itative analysis shows that rare slot types benefit the most from the
bilingual training.

Index Terms— Spoken Language Understanding, Cross-
Lingual, Slot-Filling, Intent Classification

1. INTRODUCTION

Goal-oriented dialogue systems rely on a Spoken Language Under-
standing (SLU) component to extract meaning from natural language
used in conversation [1]. SLU models the semantics of a particular
domain by parsing user utterances into semantic frames, which con-
sists of intent and slots. Formally, given the input dialogue utterance
~x with n tokens ~x = (x1, x2, · · ·xn), the slot filling task involves
generating a sequence of n tags ~y = (y1, y2, · · · yn) which iden-
tify the kind and span of different slots, and the intent classification
task assigns a intent label L to the utterance. For example, Fig. 1a
shows an utterance and its slots in Begin-Inside-Outside (BIO) en-
coding with its intent label. To develop spoken dialogue systems in
new languages, extending SLU systems to new languages is crucial.
The cross-lingual SLU task poses the following problem – given an
utterance in another language, the SLU model should generate pre-
dictions for slot-filling and intent classification. An example of a
Hindi utterance with its slots and intent label is shown in Fig. 1b.

Developing a SLU system for a new language can be quite
challenging. While datasets with labeled utterances for training an
English model are plentiful, this is not the case for most other lan-
guages. Getting high quality human translations is costly for a new
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Fig. 1: English and corresponding Hindi utterance and their slots in
BIO encoding. The correct intent label is “flight”. Tags: RT - round
trip, FC - from city, TC - to city, DDN - departure day name.

language, requiring native speakers for generating and verifying
translations and then identifying the slots. Even collecting a few
thousand examples per language becomes prohibitive, if one wants
to scale to the most popular languages in the world. Ideally, we
would like to minimize the amount of annotation effort required to
achieve a reasonable performance. Existing approaches [2, 3, 4] for
the cross-lingual SLU task use machine translation to either generate
supervision in the target language automatically, or convert the test
data to English. However, these approaches will fail on languages
for which machine translation is not reliable, or even available.

We develop a simple joint training approach which trains a SLU
model for English and the target language jointly, without relying
on machine translation. By using aligned word embeddings, our ap-
proach can perform zero-shot slot filling in the target language (with
no training data). Further adding only a few 100 labeled examples
from the target language improves performance dramatically, as our
model benefits from the shared parameter space to achieve better
performance. We experimentally show that to achieve the same per-
formance, our model requires 2.5-3 times less training data in the
target language compared to a naive approach which uses only the
examples in the target language as supervision. We evaluate our ap-
proach on 2 relatively low resource languages, Hindi and Turkish,
and show that our approach outperforms previous approaches in the
literature with only a few 100 training examples.

2. RELATED WORK

Existing work on extending SLU to new languages have relied pri-
marily on Machine Translation (MT) systems, either at train or test
time. In particular, two popular techniques have emerged – TEST ON
SOURCE [4] and TRAIN ON TARGET [5]. In the former approach
(Fig. 2a), the test data in the target language is translated using a
MT system into English, for which a state-of-the-art SLU model is
available. The English model is then run on the translated test data
to identify frames and slots. In the latter approach (Fig. 2b), the
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Fig. 2: Former approaches for Cross-lingual SLU compared to our
approach of joint training across languages. Note that our approach
does not rely on a Machine Translation (MT) step, which may be
unreliable for relatively low resource languages.

training data available in English is translated using the MT system
into the target language such that the annotations are preserved after
translation. This translated data in the target language now serves as
the training data for a new SLU model.

Variants of these approaches have also been proposed, notably
the variant of TEST ON SOURCE presented in [4]. [4] made the En-
glish SLU model robust to translation inconsistencies by training on
MT-distorted English back-translations via the target language. The
SLU model was then trained on combination of the original English
training data and the back-translated version. The intuition is that
the back-translated version will have similar inconsistencies that the
translated target language test data will exhibit, allowing the model
to adaptive to translation errors. We call this approach ADAPTIVE
TEST ON SOURCE in our experiments.

A major weakness of both these approaches is that they rely on
machine translation. While machine translation is reliable for pop-
ular languages like Spanish, German etc., this is not the case for
most languages. Indeed, previous work has focused more on high
resource languages like Chinese and French, for which high quality
machine translation is available. Machine translation also introduces
test-time latency in approaches like TEST ON SOURCE. Directly
tagging English utterances takes less than 10 ms per query (for our
model), while translating from another language to English alone
can introduce an order of magnitude larger latency (≈ 100 ms), pos-
sibly resulting in reduced conversational experience quality in real
use cases. Domain differences also has adverse effects on these ap-
proaches, as machine translation models are trained on written par-
allel text, instead of parallel dialog utterances.

3. OUR APPROACH

We first describe a naive model for joint slot filling and intent classi-
fication in the target language, which we build on later. This model
is inspired by joint slot filling and intent classification approaches
from [6, 7] and the success of RNNs on the SLU task [8].

In the following, we denote a training example in English as

( ~xe, ~ye, Le) and an example in target language using ( ~xf , ~yf , Lf ).
Let {( ~xe, ~ye, Le)}M denote English training data with M examples,
and {( ~xf , ~yf , Lf )}N denote target language training data with N
examples, where M > N . We use Φ(xi) to denote embedding of a
token xi and Φ(~x) as shorthand for (Φ(x1),Φ(x2), · · · ).
Naive Model. The naive model uses {( ~xf , ~yf , Lf )}N to train a
bidirectional RNN to predict both the intent and BIO tags (shown
in Fig. 3). The hidden state at each timestep is used to predict the
corresponding BIO tag, and the last hidden state is used to predict
the intent label. Formally,

~h = BiRNN(Φ(~x))

~yi = Softmax(Wy
~hi), L = Softmax(WL

~hn)

where ~h is the sequence of hidden states generated by the concate-
nation of forward and backward outputs from the bidirectional RNN
(BiRNN ), ~hn is the last hidden state, Wy and WL are model
weights, and Softmax is the softmax operation. The learning
objective is the sum of the sequence-tagging loss and the intent
classification loss, Lnaive = Lseq(~y, ~yp) + Lclf (L,Lp), where
~yp and Lp are current model predictions, averaged over all training
examples. The model parameters, including the word embeddings
Φ(xi), are learnt during training.

The naive approach only utilizes the little training data that
might be available in the target language. However, for most SLU
tasks, training data in English is available, therefore it is desirable
to use it for improving generalization in a new language. We show
how to achieve this by training a joint model for both languages,
such that parameters are shared across languages.
Bilingual Embeddings. To encourage parameter sharing we need
to ensure the features (viz. the word embeddings) in different lan-
guages lie in the same vector space. However, word embeddings
trained monolingually for two different languages do not encode
cross-lingual semantics appropriately. For instance, the embeddings
for Φe(atlanta) and its Hindi translation Φf (
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have high cosine similarity. To achieve this, we first align the em-
beddings into a shared vector space.

Aligning word embeddings in different languages has been a
popular research direction in natural language processing [9, 10, 11,
12, 13, inter alia]. A common approach is to learn linear transforma-
tions W and V, such that vectors for semantically equivalent words
are aligned (for instance, WΦe(atlanta) and VΦf (
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will have higher cosine score) and reside in a shared vector space,
which we denote as Φe,f . We adopt this simple approach and use
publicly available embeddings from [14] with the alignment matri-
ces from [15] to project embeddings into a shared space. We also
experimented with other approaches for aligning embeddings like
CCA [16], but got the best results using off-the-shelf vectors.

3.1. Zero-Shot SLU

Aligned word embeddings also enable zero-shot SLU. For this, we
first train an English SLU model on {( ~xe, ~ye, Le)}M using Φe,f to
embed English tokens. To ensure the embeddings remain aligned
across languages, they are not updated during training.

The model is then directly tested on the target language test
utterances, using Φe,f to embed the target language tokens. As
Φe,f ensures embeddings from different languages for semantically
equivalent words are similar, the model parameters can still predict
certain slots accurately. The approach is shown in Fig. 3, where the
parameters enclosed in the grey box are pre-trained on English.
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Fig. 3: Naive Model: Only target language examples are used dur-
ing training. Zero-Shot SLU: The naive model is pre-trained on
English, with fixed word embeddings from the shared vector space,
and then tested directly on Hindi. Parameters enclosed in the grey
box are pre-trained on English.

3.2. Bilingual Training

Using aligned embeddings Φe,f , we can modify the naive model to
enable joint bilingual training (shown in Fig. 4). Formally,

~h = BiRNN(Φe,f (~x))

~yi = Softmax(Wy(~hi ⊕ ~k)), L = Softmax(WL(~hn ⊕ ~k))

where (~x, ~y, L) ∈ {( ~xe, ~ye, Le)}M ∪ {( ~xf , ~yf , Lf )}N . That is,
the training examples come from either language. To aid the model
learn language specific patterns, we also introduce a language indi-
cator vector ~k which encodes which language the current training
utterance belongs to, shown on the left in Fig. 4. Vector ~k is con-
catenated with ~hi and fed into all softmax layers responsible for pre-
dicting either the intent or the slot tags. As before, we fix the word
embeddings during training. The model is trained using a joint learn-
ing objective Ljoint =

∑
z∈{e,f} Lseq( ~yz, ~yp) + Lclf (L

z, Lp) to
optimize losses on both languages. Examples from either language
are randomly mixed in a mini-batch.

4. EXPERIMENTS

Data Collection. Following previous work [4], we collected anno-
tated utterances in two relatively low resource languages, Turkish
and Hindi, by manually translating utterances in the English ATIS
Corpus [17], a popular benchmark for SLU [18, 19, 20].

Manual translations were generated by native speakers of the
target language, who were asked to ensure that the translations are
faithful to the request expressed in the original English utterance.
We used Amazon Mechanical Turk to generate the phrase level slot
annotation on the manual translations. A total of 893 and 715 (ran-
domly selected) utterances from the ATIS test split were translated
and annotated for Hindi and Turkish evaluation respectively. We also
translated and annotated 600 (randomly selected for each language
separately) utterances from the ATIS train split to use as supervision.
When training a joint bilingual model, or a model using the TEST ON
SOURCE or TRAIN ON TARGET approach, we use the ATIS train
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Fig. 4: The Bilingual Training Setup.

split of 4978 utterances as supervision in English. Automatic trans-
lations for the TEST ON SOURCE and TRAIN ON TARGET approach
were generated using Google Translate.
Evaluation and Training Setup. We compare the naive and the
bilingual models by varying the amount of training data available
in the other languages. We also include the TRAIN ON TARGET
and TRAIN ON SOURCE approaches in the slot filling comparison to
demonstrate their shortcomings.

We plot the evaluation metric (tagging F1 or intent accuracy)
against the number of training examples. When using a fraction of
the training data with the naive and the bilingual models, we sub-
sample 5 times from the entire pool of training examples and report
the average performance. We use the standard conlleval script [21]
for evaluating the slot-filling, and classification accuracy for intent.

In all experiments, we used size 300 embeddings from [14, 15],
normalized to unit norm. The RNN unit was a LSTM [22], with
hidden state of size 100. The language indicator vector ~k of size 5
in the bilingual model was trained along with model parameters. All
models were trained for a total of 10 epochs with a batch size of 5,
using Adam [23] with a learning rate of 1e-3, and a word dropout rate
of 0.5 [24]. All models were implemented using Tensorflow [25].

4.1. Experimental Results

The slot filling results are shown in Figure 5. TRAIN ON TARGET
is worse on Hindi due to poor translation quality, even though it had
≈5k queries to train on. TEST ON SOURCE performs quite well
on both languages, and improves substantially after adding adaptive
training with back-translations, as shown by the ADAPTIVE TEST
ON SOURCE curve. This is reasonable as translation quality is higher
when translating from a foreign language to English (viz. TEST ON
SOURCE) than the opposite direction (viz. TRAIN ON TARGET).
In comparison, the zero-shot approach with a trained English SLU
model performs relatively well, given that there was no training data
in target language, but worse than all the existing approaches.

For the naive model, we approximately need around 600 exam-
ples in both languages to achieve a F1 of 75.0. In comparison, our
bilingual model only requires ≈200 examples to achieve a F1 of
75.0. In fact, it beats the previous best approach, ADAPTIVE TEST
ON SOURCE, with only 100 examples in both languages. Note that
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Fig. 5: Slot Filling F1 for Hindi (above) and Turkish (below), plotted against
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Fig. 7: F1 per slot type for Hindi and Turkish for naive and bilingual
models when given only 100 examples in the target language.

our approach does not suffer from the latency introduced by ma-
chine translation that either of the TEST ON SOURCE approaches
suffer. Overall, using all 600 training examples, the naive approach
achieves F1 of 75.5 (Turkish) and 74.6 (Hindi), compared to 78.9
(Turkish) and 80.6 (Hindi) achieved by the bilingual approach. This
suggests that not only does joint training reduce the amount of super-
vision required, it also improves generalization. The jointly trained
model also performs competitively on English – with 93.2 and 94.9
F1 when trained jointly with Hindi and Turkish respectively.1

We also compare intent classification accuracy for the naive and
the bilingual model in Fig. 6. A similar trend is observed, in that the
naive model requires 600 (or more) examples to attain a accuracy of
80%, which the bilingual model attains with ≈50 examples.
Qualitative Analysis. We compare the per slot F1 for naive and the
bilingual model for different slot types. We choose five slot types
(out of 63) from ATIS based on frequency – two slots (airline name,
depart period of day) are frequent in the dataset (> 100 mentions)
and three slots (airline code, from state name, meal) are rare (<50
mentions). We compare the F1 per slot type of the naive and bilin-
gual model when given only 100 examples in the target language.

The profiles are shown in Fig. 7. Notice that for rare slots (like
meal, airline code), there is a huge difference (over 40 F1 pts) be-
tween the bilingual model and the naive model. For more frequent
slots like depart period of day and airline name, the bilingual model
still performs better than the naive model, but the improvement is rel-
atively less (over 20 F1 pts). This suggests that the bilingual training
helps in learning patterns indicative of rare slot types with much less
data compared to the naive model.

5. CONCLUSION

We proposed a simple bilingual training approach to train a SLU
model in a new language jointly with English, without relying on
machine translation. Our approach outperforms existing state-of-
the-art approaches on new SLU benchmarks2 in Hindi and Turkish,
while maintaining competitive performance on English.

There are several avenues of future research. More parameter
sharing can be achieved across languages by using character level
embeddings in conjunction with word embeddings. A fully mul-
tilingual approach which trains the same model to handle three or
more languages is also a natural extension of our work.

1training only on English achieves 95.2.
2Available at github.com/google-research-datasets/

dialogue/tree/master/multilingual-atis
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bara Plank, Bernd Bohnet, and Anders Johannsen, “Inverted
indexing for cross-lingual nlp,” in Proc. of ACL, 2015.

[12] Waleed Ammar, George Mulcaire, Yulia Tsvetkov, Guillaume
Lample, Chris Dyer, and Noah A Smith, “Massively multi-
lingual word embeddings,” arXiv preprint arXiv:1602.01925,
2016.

[13] Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth,
“Cross-lingual models of word embeddings: An empirical
comparison,” in ACL, 2016.

[14] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov, “Enriching word vectors with subword information,”
Transactions of the Association for Computational Linguistics,
vol. 5, 2017.

[15] Samuel L Smith, David HP Turban, Steven Hamblin, and
Nils Y Hammerla, “Offline bilingual word vectors, orthogo-
nal transformations and the inverted softmax,” ICLR, 2017.

[16] Manaal Faruqui and Chris Dyer, “Improving vector space word
representations using multilingual correlation,” in Proc. of
EACL, 2014.

[17] Patti J Price, “Evaluation of spoken language systems: The
ATIS domain,” in Speech and Natural Language: Proceedings
of a Workshop Held at Hidden Valley, Pennsylvania, 1990.

[18] Yulan He and Steve Young, “A data-driven spoken language
understanding system,” in Automatic Speech Recognition and
Understanding, 2003. ASRU’03. 2003 IEEE Workshop on.
IEEE, 2003, pp. 583–588.

[19] Christian Raymond and Giuseppe Riccardi, “Generative and
discriminative algorithms for spoken language understanding,”
in Eighth Annual Conference of the International Speech Com-
munication Association, 2007.

[20] Gokhan Tür, Dilek Hakkani-Tür, and Larry Heck, “What is left
to be understood in ATIS?,” in Spoken Language Technology
Workshop (SLT). IEEE, 2010.

[21] Erik F Tjong Kim Sang and Sabine Buchholz, “Introduction
to the CoNLL-2000 shared task: Chunking,” in Proceedings
of the 2nd workshop on Learning language in logic and the
4th conference on Computational natural language learning-
Volume 7. Association for Computational Linguistics, 2000,
pp. 127–132.

[22] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[23] Diederik Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” in ICLR, 2014.

[24] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov, “Dropout: a simple way
to prevent neural networks from overfitting.,” Journal of ma-
chine learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[25] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

6038


