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ABSTRACT
Studies have shown that measures of personal physiology,
e.g., blood pressure (BP) variation and heart rate variability
(HRV), is closely related to a subject’s psychological states
and are being used regularly to track patients’ health condi-
tions in medical settings. The conventional method of moni-
toring physiology requires wearing specialized sensors or uti-
lizing medical instruments, which hinders the ability of scal-
able and just-in-time monitoring of patients. In this study,
we propose a triplet-loss embedded deep regressor network to
predict changes of BP using expressive prosodic features for
on-boarding emergency room patients between pre- and post-
triage sessions. The framework achieves correlations of 0.419
and 0.386 in predicting changes in SBP (systolic blood pres-
sure) and DBP (diastolic blood pressure) respectively, which
is 26.1% and 17.3% relative improvement compared to DNN-
regressors without triplet-loss embedding. Further correlation
analyses on the relationship between prosodic features and BP
changes are presented.

Index Terms— behavioral signal processing, triplet loss
embedding, blood pressure, prosody, triage session

1. INTRODUCTION

There has been a wide variety of research exploring the rela-
tionship between human physiological signals and their psy-
chological states. In specifics, many have examined the in-
teraction between the central cardiovascular and pain mod-
ulation system. For example, researchers have pointed out
a phenomenon known as hypertension-induced hypoalgesia,
which refers to a condition where patients with arterial hy-
pertension perceive less pain and have lower pain sensitivity
than normal individuals [1, 2]. Furthermore, postoperative
chest pain experienced during physical exercise has also been
shown to be inversely correlated with blood pressure (BP) [3]

Recent research further suggests that BP variation could
be a more generalized indicator of the overall negative emo-
tion experience and reactivity. For example, the subtle change
in the central nervous system (CNS) has been shown to ac-
company or precede an increase in BP [4]. Functionally,

blood pressure-related antinociception may represent a com-
plex coordinated adaptive response of the body to stressful
situations. Experiments have shown that higher BP is associ-
ated with dampened responses to negative emotional stimuli
[5, 6], while other research found that BP can also damp
responses to positively valenced stimuli [7]. Furthermore,
research has also observed the connection between BP and
several general affective traits, e.g., an influence of stress on
BP variation [8], and the effect of inhibition of expressive
negative emotion on BP changes [9]. Not only does the phys-
iological signal provide a hint related to our inner state, it is a
measure of our health condition regularly used in medical set-
tings, e.g., BP is measured for every on-boarding emergency
patient.

Few but recent research have started to indicate that
changes in physiology are reflected in an individual’s ex-
pressive vocal cues. For example, rapid rises in loudness
and tempo are related to increases in BP [10]. Tsiartas et
al. demonstrate that the changes in acoustic features are pre-
dictive of changes in speaker’s HRV when interacting with
a frustration-induced dialog agent [11]; at the same time, a
BP evaluation method is proposed showing that it would be
preferable to estimate BP by using voice-spectrum analysis
[12]. Although detecting physiology changes from vocal
cues have been studied, none of the works include real-world
and clinically-spontaneous data collection in a medical set-
ting. Further, there remains a lack of any sound learning
framework in this domain. The ability to model the changes
of physiological state from easily-obtainable vocal cues can
open up opportunities for just-in-time patient monitoring.

In this work, we leverage a large-scale real patients
database, i.e., collected at the Chang Gung Memorial Hos-
pital for studies of pain in triage classification [13, 14], to
develop a computational framework to predict changes in BP
between pre- and post- triage sessions of on-boarding patients
using prosodic cues. We propose a triplet-loss deep regres-
sor network to infer changes of BP from prosodic features.
The framework achieves a predicted correlation of 0.419 and
0.386 for SBP (systolic blood pressure) and DBP (diastolic
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Fig. 1. Our proposed Fisher-vector based deep triplet-loss embedded deep regressor network to predict changes in blood
pressure between pre- and post- intervention at emergency triage using prosodic features.

blood pressure), which is 26.1% and 17.3% relative improve-
ment over DNN-regressor without a triplet-loss embedding
layer. The use of a triplet-loss embedding layer helps mitigate
issues of individual idiosyncrasy and is naturally appealing
and applicable in individualized health monitoring.

The rest of paper is organized as follows: Section 2 de-
scribes our proposed framework. Section 3 shows our results
and discussions. Section 4 is the conclusion.

2. RESEARCH METHODOLOGY

2.1. Chang Gung Audio-Video Pain Database
We use the database collected at the Chang Gung Memorial
Hospital emergency department1. The database was origi-
nally collected to develop automated computational models
to measure an on-boarding emergency room patient’s pain in-
tensity level during triage sessions. The database includes
audio-video data (recorded using a Sony HDR handy cam
in a fixed assessment room), measures of physiological data
(body temperature, heart rate, respiration rate and blood pres-
sure), numerical rating scale of pain intensity, and other clini-
cal outcomes (analgesic prescription and patient disposition).
Every patient is recorded at two points in time, i.e., an ini-
tial triage session (pre-) and a follow up session (post-) Each
session lasts about 30 seconds to 1 minute. There are a total
of 262 unique patients collected in the Chang Gung Audio-
Video Pain database. Due to missing data and bad recording
conditions, we use a subset of 94 unique patients, each col-
lected at both pre- and post- session resulting in a total of 188
samples in this work. All patients’ utterances are manually
segemented, and staffs’ voicing portions are excluded in this
work. This constitutes the dataset used in this work and is one
of the largest spontaneous real spoken datasets collected in a
hospital setting.

1IRB#:CM104-3625B

2.2. Computational Framework

We will elaborate our proposed Fisher-vector based triplet-
loss embedded deep regressor network in this section. Figure
1 depicts our overall framework, including prosodic low-level
descriptors, Fisher-vector encoding, and triplet-loss embed-
ded deep regressor network.

2.2.1. Prosodic Low Level Features

The Chang Gung Audio-Video Pain database has been pre-
segmented into utterances with speaker identification marked.
Previous studies on this database have indicated that prosodic
features can be robustly extracted for the task of estimat-
ing pain [14]. Hence, in this work, we extract 9 low-level
prosodic descriptors in total, including 1 pitch, 1 intensity, 1
harmonic-to-noise ratio and their associated delta and delta-
delta every 10ms using the Praat toolkit [15]. These prosodic
features are further z-normalized per speaker.

2.2.2. Fisher Vector Encoding

Fisher vector encoding approach projects the original low-
level descriptors (LLD) feature space into a generative statis-
tical representation with discriminative power [16]. The use
of Fisher vector encoding originated from computer vision
task and has since been recently proposed in the automatic
paralinguistic analyses from voice [17]. We use Fisher vector
encoding as our feature representation at the frame level. A
brief description of Fisher vector encoding is below:

The low-level acoustic feature set is denoted by X =
{xt, t = 1...T} with D dimensions, and the set of parame-
ters of the GMM is λ = {wi, µi,Σi, i = 1...K} where wi, µi
and Σi corresponds to the zeroth (weight), first (mean vector)
and second (covariance matrix) statistics for each mixture of
Gaussian, respectively. The likelihood p(xt|λ) and posterior
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Table 1. A summary of prediction results. Functional: 15 statistic values of low-level descriptors; FV: session-level Fisher-
vector encoding; Regressor: a 4-layer DNN regressor; Triplet Regressor: proposed architecture with triplet layer embedding.

Targets Pitch Functional Intensity Functional HNR Functional Best Functional Best Fisher Vector Best Neural Network

Regressor Triplet-Regressor

SBP 0.082 0.222 0.259
0.260
(PIH)

0.241
(PIH)

0.306
(PIH)

0.386
(PIH)

DBP 0.28 0.341 0.287
0.354
(PI)

0.369
(PI)

0.357
(PI)

0.419
(PI)

γt(i) can be then computed using estimated µi and Σi,

p(xt|λ) =

K∑
i=1

wipi(xt|λ) (1)

γt(i) = p(i|xt, λ) =
wipi(xt|λ)∑N
j=1 wjpj(xt|λ)

(2)

Then, the gradient functions can be computed below in-
dicating the direction of movement in the GMM parameter
space to properly fit the observed data sample.

gXµi
=

1

T
√
πc

T∑
t=1

rt(k)

(
xt − µi
σi

)
(3)

gXσi
=

1

T
√

2πc

T∑
t=1

rt(c)

(
(xt − µi)2

σ2
i

− 1

)
(4)

In this work, we transform the raw prosodic LLDs into Fisher
vectors by concatenating gXµi

and gXσi
computed every frame.

2.2.3. Triplet-loss Embedded Deep Regressor Network
The objective of this work is to estimate the change in BP of
a patient between two assessment time (pre: triage session
and post: follow-up session) from prosodic Fisher vector
representation. A conventional approach in predicting the
change is to the regress on the feature difference, e.g., Tsiar-
tas et al. predict the difference in HRV using features by
subtracting the acoustic descriptors from post-stimuli ses-
sion to pre-stimuli session [11]. In this work, we propose a
neural network architecture that combines a triplet-loss em-
bedding layer to a standard deep neural network regressor.
Triplet embedding has recently being applied for learning
image descriptors and speaker-turn embedding [18, 19]. In
a triplet-loss network, the inputs are a batch of triplet units
< xai , x

p
i , x

n
i >, where xai and xpi belong to the same iden-

tity while xai and xni refer to the different identities. In our
task, xai and xpi is defined as patient’s pre-session frame and
xni corresponds to the post-session. Let f(x) denote the
networks feature representation of input x which embeds
the prosodic representation into a d−dimensional Euclidian
space. For a training triplet < xai , x

p
i , x

n
i >, the ideal feature

representation should satisfy the following constraint:

‖f(xa)− f(xp)‖+ τ ≤ ‖f(xa)− f(xn)‖ (5)

where τ is a hyperparameter defining the minimum margin
between the pre and the post-session. Thus, the triplet-loss
function (LTriplet) being minimized is defined below:

N∑
1

max{‖f(xa)− f(xp)‖+τ−‖f(xa)− f(xn)‖ , 0} (6)

As shown in Figure 1, we construct layers of fully-connected
network as triplet-loss embedding layer before feeding into
the deep neural network regressors. The complete triplet-loss
embedded deep regressor network is optimized using the fol-
lowing total loss function,

LTotal = LMSE + α ∗ LTriplet (7)

where LMSE is the mean square error to the target label and α
refers to the weighting between the two losses.

2.2.4. Target Label Definition

The target label, y(i), is defined for each patient i as:

y(i) = (BPpre(i)− BPpost(i)) /BPpre(i) (8)

which is the percentage change of BP from triage (pre) to
follow-up (post) session.

3. EXPERIMENTAL SETUP AND RESULT

3.1. Experimental Setup
The exact architecture of our triplet-loss embedded deep re-
gressor network includes: the DNN regressor is composed
of 4 fully-connected layers, and the dimensions are (2M)-
M-10-1, where M represents the dimension of the Fisher
vector input, the triplet embedding network includes 2 ad-
ditional fully-connected layers with node number (2M)-M.
The mixture number used in the GMM for Fisher vector en-
coding is selected empirically (grid search within the range
{2, 4, 8, 16, 32, 64}). To train the triplet-loss network, we
randomly sample frames in the two sessions for a patient
forming the triplet pair < xai , x

p
i , x

n
i >.

We carry out a 20-fold speaker-independent cross-validation
for every experiment. The complete network is trained using
Adam (lr = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e− 08), and
the evaluation metric used is the Spearman correlation.

6021



Table 2. The table lists top 10 correlated prosodic features to
the target label. The superscript refers to 1st or 2nd order delta.

SBP Functional LLD Corr.

Intensity2-F12 0.235216
Intensity-F15 0.223238
Intensity-F11 0.218036
Intensity1-12 0.202445
HNR2-F8 0.201419
HNR-F11 0.200282
Intensity-F13 0.19785
HNR1-F12 0.171682
HNR2-F10 0.160296
Intensity1-F14 0.155513
Top Features: Intensity(*6), HNR(*4)

DBP Functional LLD Corr.

Pitch-F3 0.296825
Intensity1-F14 0.262962
Pitch-F10 0.262912
Intensity-F11 0.238102
Intensity-F2 0.228623
Intensity-F15 0.223016
HNR1-F3 0.177839
Pitch-F14 0.166661
Intensity-F13 0.164762
Pitch-F1 0.160998
Top Features: Pitch(*4), Intensity(*5)

3.2. Experimental Results and Analysis
Table 1 summarizes results of our prediction experiments
on SBP and DBP using prosodic features. The columns ti-
tled ‘Functional’ refer to using 15 statistical properties (max,
min, mean, median, std, 1 percentile, 99 percentile, 99 per-
centile - 1 percentile, skewness, kurtosis, min position, max
position, 25 percentile, 75 percentile, 75 percentile - 25 per-
centile, denoted as F1-F15) calculated for each descriptor at
the session-level, then the subtraction between post-session
and pre-session feature vector is used to train the support
vector regression to predict change in BP. The column of
‘Fisher Vector’ is done by performing session-level Fisher
vector encoding, then the subtraction output between the two
sessions is then fed through support vector regression

Our proposed network obtains the best accuracy of 0.386
(p-value ∼ 0.001) in predicting changes of SBP and 0.419
(p-value < 0.001) in predicting changes of DBP. The use of
triplet-loss embedded layer provides essential improvement
when comparing to straightforward DNN regressor, in spe-
cific, it obtains a 26.1% and 17.4% relative gain for SBP
and DBP respectively. Furthermore, the use of triplet-loss
network consistently outperforms methods which uses fea-
ture subtraction between sessions, while the approach of fea-
ture subtraction can help in cases of estimating within-speaker
physiology variation, the use of triplet-loss embedding evi-

dently provides improved modeling power to handle the com-
plexity of this non-linear individual idiosyncrasy.

3.2.1. Prosodic Feature Analysis
To further understand the relationship between each type of
prosodic features and BP (SBP and DBP) changes, we com-
pute the correlation of each functional feature to our target la-
bels. The top-10 correlated features over 20 cross-validation
folds are listed in Table 2. Generally, we observe that the
difference in the characteristics of voice intensity and HNR
is associated with the change in SBP, while the difference
in the characteristics of pitch and voice intensity is associ-
ated with the change in DBP. This result also corroborates
with the accuracies obtained in Table 1, i.e., the best accuracy
achieved in predicting SBP change is by using pitch, intensity,
and HNR (PIH), and the best accuracy obtained for predicting
DBP change is by using pitch and intensity only (PI). Further-
more, we see that the temporal changes (deltas) of LLDs seem
to be more indicative about the change in SBP than in DBP.
While the exact mechanism of the change in BP in altering
the manifested voice characteristics needs to be further stud-
ied, we present an initial investigation in this work.

4. CONCLUSION

In this work, we present a novel computational framework of
triplet-loss embedded deep regressor network to predict the
change in BP by modeling an individual’s prosodic variations.
We use a large-scale dataset collected in the real-world medi-
cal setting, in specifics triage session at the emergency depart-
ment. Our proposed framework obtains significant predictive
ability of the change in BP between two different time points,
i.e., triage session and follow-up session, using the patient’s
prosodic characteristics. An analysis on the prosodic features
reveals that all pitch, HNR, and intensity features can be in-
dicative of the change in SBP of a patient, and pitch and in-
tensity are associated with the change in DBP.

There are multiple future directions. One immediate
direction is to incorporate facial expressions as additional
easily-obtainable expressive behavior modalities with tem-
poral modeling technique in the task of estimating inner
physiological states changes from external behaviors to fur-
ther improve our computational framework. Second, the
deeper understanding of the relationship between the mani-
fested prosodic variation and the physiological state changes
is important to bring quantitative insights about the under-
lying physio-psychological mechanism. Lastly, the use of
triplet loss embedding is intuitively appealing in patient mon-
itoring, where the individual idiosyncrasy continues to be a
challenging computational problem hindering the effective
tracking of individual health progression. As for currently,
there is still room for improving prediction accuracy, we will
continue to develop an advanced framework for a variety of
human behavior modeling tasks, especially in the healthcare
domain [20, 21].
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