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ABSTRACT

Training machine learning algorithms for speech applications re-
quires large, labeled training data sets. This is problematic for clini-
cal applications where obtaining such data is prohibitively expensive
because of privacy concerns or lack of access. As a result, clini-
cal speech applications typically rely on small data sets with only
tens of speakers. In this paper, we propose a method for simulat-
ing training data for clinical applications by transforming healthy
speech to dysarthric speech using adversarial training. We evalu-
ate the efficacy of our approach using both objective and subjec-
tive criteria. We present the transformed samples to five experienced
speech-language pathologists (SLPs) and ask them to identify the
samples as healthy or dysarthric. The results reveal that the SLPs
identify the transformed speech as dysarthric 65% of the time. In a
pilot classification experiment, we show that by using the simulated
speech samples to balance an existing dataset, the classification ac-
curacy improves by ∼ 10% after data augmentation.

Index Terms— Dysarthric speech, voice conversion, adversar-
ial training, data augmentation

1. INTRODUCTION

Recent studies in machine learning have shown that models built
from large data sets can achieve extraordinary performance by
mining data-driven features directly from the data. Take large vo-
cabulary continuous speech recognition as an example: databases
consisting of thousands of hours of speech from many individu-
als that cover the large variability in speaking style, environment,
speaker age, etc., are required to train powerful deep neural networks
(DNNs)-based acoustic models [1].

For consumer applications, speech samples can be collected ef-
ficiently on a large scale; however for clinical applications of speech
analytics, healthy speech samples have only limited utility. For ex-
ample, if our aim is to build speech-based assistive technology for
patients with amyotrophic lateral sclerosis (ALS), simple applica-
tion of models trained on healthy speech fail even under moderate
dysarthria [2]. Other clinical speech applications that require large
labeled training sets include automatic detection of speech disorders
[3][4], intelligibility assessment [5][6], automatic recognition of dis-
ordered speech [7][8], automated acoustic measures of speech disor-
ders [9][10], etc.

Unlike healthy speech, the collection of pathological speech
takes longer to conduct and can be more sensitive to other factors,
such as variable recording conditions, uncontrolled body move-
ments, unbalanced samples across speakers and diseases, etc. In the
literature, there only exist a few publicly-available datasets that are

relatively large (e.g., the Nemours database [11] and the TORGO
database [12]); but most researchers opt to collect their own small-
scale datasets tailored to their needs. Due to a lack of data, machine
learning models used in the study of pathological speech are typi-
cally limited to simple unsupervised metrics [13], or flat supervised
models [14][15]. When deep learning models are used [16], their
solution space is typically constrained using other criteria for better
generalization.

Our aim in this paper is to generate simulated dysarthric speech
via a model that transforms healthy speech to dysarthric speech so as
to augment existing datasets for training large scale machine learning
models. To the best of our knowledge, this is the first attempt to aug-
ment training data using voice conversion techniques. We restrict our
analysis to speech from individuals with ALS, a rapidly progress-
ing neurodegenerative disease. Machine learning models based on
speech are particularly useful for this group of patients for building
new assistive devices that generalize well across disease conditions
and patient speaking styles.

The proposed method includes speaking rate modification using
PSOLA, spectral feature transformation using adversarial training,
and pitch modification using a linear transformation. We conducted
objective and subjective evaluation to examine whether the simu-
lated ALS speech matches true ALS speech in both the acoustic and
perceptual domain. Furthermore, we demonstrate the utility of data
augmentation on a classification task. In the remaining parts of this
paper, Section 2 introduces the proposed transformation framework
and experimental settings. The objective and subjective validation
of the method are presented in Section 3 along with a pilot exper-
iment of data augmentation using the simulated samples. We con-
clude with a discussion of our future plans in Section 4.

Relation to previous work: Voice conversion is a technique
to modify a source speaker’s speech to be perceived as if a target
speaker had spoken it [17]. This paper is motivated by this idea,
however the source and target speakers in our study are a group of
healthy speakers and a group of ALS speakers. Speech transforma-
tion of dysarthric speech has also been previously studied [18, 19].
In contrast to these studies, the present study attempts to trans-
form healthy speech to pathological speech for data augmentation
rather than doing in the opposite way for improving intelligibil-
ity. Adversarial training has been recently explored in the field of
voice conversion [20][21][22]. In the most recent work in [20], the
authors used variational autoencoding Wasserstein generative adver-
sarial network (VAW-GAN) to transform speech features, with the
assumption that there is a latent variable representing the common
phonetic content. However, this assumption fails for ALS speech,
where there is a significant deviation from healthy speech in the
acoustic representation of phonemes. As an alternative, we use deep
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Fig. 1. Proposed transformation frame.

convolutional generative adversarial networks (DCGANs) that has
been used for speech synthesis postfiltering [21][22] to transform
speech features.

2. PROPOSED METHOD

We begin with the assumption that we have a group of ALS speakers
with similar perceptual symptoms (e.g. reduced articulatory preci-
sion) we aim to model and a group of healthy speakers with a distinct
speaking style (e.g. a regional accent). Our aim is to superimpose
the ALS symptoms to the speakers with different speaking styles in
an attempt to model the variation induced by the disease and the
variation in speaking style. This allows us to artificially expand the
training set in machine learning applications.

The proposed transformation framework is shown in Figure 1.
The source ‘speaker’ is a group of healthy speakers, and the target
‘speaker’ is a group of ALS speakers as described above. We as-
sume that speakers from both groups read the same materials and we
build a mapping between each healthy / ALS speaker pair. Suppose
there are N healthy speakers and M ALS speakers. Each speaker
reads the same P sentences. The paired samples for training are
denoted by {Si,k, Tj,k}, where Si,k and Tj,k are the source and tar-
get speaker, respectively, with i = 1, 2, ..., N , j = 1, 2, ...,M , and
k = 1, 2, ..., P . By performing the training over groups of speakers,
we expect that the model will superimpose the ALS symptoms to
healthy speech rather than learning a specific speaker’s pattern.

People with ALS suffer from mixed flaccid spastic dysarthria,
characterized by slow speech rate, imprecise phoneme articulation,
hypernasality, monopitch, breathiness, and a harsh voice [23]. To
capture these characteristics, we propose the three-step conversion
strategy outlined in Figure 1: 1) speaking rate modification; 2) spec-
tral feature transformation using DCGANs; 3) pitch modification.
We describe the details of these below.

2.1. Speaking rate modification

The first transformation is to modify the speaking rate of the healthy
speech to match the rate of ALS speech. During training, we match
each healthy speech sample to the length of its paired ALS speech
sample. During testing, each healthy speech sample is modified to a
reference value. In our study, the rate of ALS speech was twice as
slow on average as the rate of the healthy speech. As a result, for
test speech samples, we stretch them to double their lengths. The
change in speaking rate is performed by using the open-source Praat
Vocal Toolkit [24], which uses PSOLA to change the duration of the
speech while preserving the pitch.
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Fig. 2. The structure of DCGAN model used in the presented study.

2.2. Speech feature extraction

As Figure 1 shows, after rate modification, we transform the spec-
tral and pitch features extracted by the STRAIGHT analysis [25].
The fundamental frequency F0, spectrogram (SP), and the aperiodic
spectrum (AP) are extracted from the ALS speech samples and the
rate-modified healthy samples. The SP and AP features are then
transformed to 39-dimensional mel-cepstral coefficients (MCEPs)
and 24-dimensional band-aperiodicity parameters (BAPs), respec-
tively [26]. We expect that the ALS speech characteristics of im-
precise phoneme articulation, hypernasality, and breathiness can be
modeled by transforming the MCEPs; harsh vocal quality can be
modeled by transforming aperiodic components; and monopitch can
be modeled by modifying F0.

2.3. Spectral feature transformation

The spectral features (MCEPs and BAPs) are transformed using ad-
versarial training. Generative adversarial networks (GAN) [27] are a
machine learning strategy which uses a combination of discrimina-
tive and generative models. The generative model tries to generate
samples similar to the target, while the discriminative model tries to
distinguish between the distribution of generated samples and actual
samples. By training the two models simultaneously, it is expected
that the generated samples become indistinguishable from the target
sample.

In our study, we take advantage of adversarial training and use
DCGANs [28] to transform healthy speech to ALS speech. The
structure of the model we used is shown in Figure 2. The lower
panel is the generator while the upper panel is the discriminator. The
architectures of the multilayer convolutional neural network (CNN)
in the generator and the discriminator are shown in Table 1. Within
each batch at both the discriminator and the generator, we zero-pad
the speech samples until all are of identical temporal length. The
input dimension D is the dimension of the spectral features and
TH and TALS are the sequence length (with zero padding) for the
healthy and ALS speakers, respectively. Note that TH does not have
to equal to TALS since convolution is used. In both the generator-
CNN (G-CNN) and the discriminator-CNN (D-CNN), convolution
with padding is used to keep the input and output dimensions the
same. For the generator, the input is the healthy speech feature se-
quence extracted from an utterance (healthy features shown with a
red border in the figure), followed by a multilayer CNN (G-CNN).
The output of the generator, which has the same size as the generator
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Table 1. The structure of DCGAN.
Generator-CNN Discriminator-CNN

Input D × TH D × TALS(or TH )

Conv1 8 conv with 5 × 5 kernel
size and 1 × 1 stride

8 conv with 5 × 5 kernel
size and 2 × 2 stride

Conv2 8 conv with 5 × 5 kernel
size and 1 × 1 stride

16 conv with 5 × 5 kernel
size and 2 × 2 stride

Conv3 1 conv with 5 × 5 kernel
size and 1 × 1 stride

32 conv with 5 × 5 kernel
size and 2 × 2 stride

Conv4 N/A 64 conv with 5 × 5 kernel
size and 2 × 2 stride

Output D × TH 64×D × TALS(or TH )

input, is sent to the discriminator along with the content-parallelled
ALS speech feature sequence (ALS features shown with a blue bor-
der in the figure). For the discriminator, a multilayer CNN (D-CNN)
is connected to the input feature sequence. The D-CNN processes
the ALS and transformed speech in the same fashion. Average pool-
ing is used in the D-CNN to process batches with different lengths by
temporally averaging the output of the last convolutional layer. Then
flattening is applied to concatenate the outputs of average pooling,
resulting in a 64D-dimensional vector. A fully connected layer is
used to make the binary classification decision at the discriminator.

Activation functions for the convolution layer are rectified linear
unit (ReLU), and the activation function for the fully-connected layer
is a sigmoid. The model was trained using Tensorflow [29]. After
hyperparameter tuning, the batch size was set to 32, the learning rate
was set to 0.00006 with the Adam optimizer [30] with 25 epochs.

2.4. Pitch modification

Pitch is modified using a linear transformation. An important char-
acteristic of ALS speech is reduced pitch variation. We model this
reduction in variation through a linear transformation,

F0
trans(i) = (F0(i)− F̄0) ∗ α+ F̄0 (1)

where F0(i) is the estimated nonzero pitch of the healthy speaker for
frame i, and α = σ̄F0ALS

/ σF0 is the ratio of standard deviations
between the average of ALS speakers and the healthy speaker.

2.5. Experimental settings

We use a subset of a dysarthric speech dataset collected in the Motor
Speech Disorders Laboratory at Arizona State University. It con-
sists of speech samples collected from 8 ALS speakers and 8 healthy
speakers (4 females and 4 males for each). The dysarthric severity of
the ALS speakers ranges from moderate to severe. Each speaker read
the same 80 short phrases (6 syllables in each) in English [31]. We
used 70 phrases for training and the other 10 for testing. The training
data were organized in a speaker independent style within gender,
which means that each female/male healthy speaker was mapped to
each of the female/male ALS speakers. Therefore, the total number
of training samples including both females and males was 2240, and
the number of test samples was 80.

During the training stage, we modify the speaking rate of the
healthy samples to match their paired ALS speech. Two DCGAN
models were trained on the MCEP and BAP features, respectively.
The standard deviation of the pitch contour for each ALS speech
sample was calculated. During the test stage, the duration of each

Table 2. Objective and subjective evaluation results
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Accuracy on control healthy
and ALS samples 98%

Percentage of transformed
perceived as ALS 65%

Percentage of transformed
perceived as ALS with consensus 76%

healthy speech sample was modified to its double length. The
MCEPs and BAPs were transformed using the trained DCGAN
models, and the F0 was modified based on Equation 1. STRAIGHT
synthesis was used to reconstruct the speech signal.

3. RESULTS

3.1. Objective evaluation

Objective evaluation was performed to examine whether the gener-
ated speech is acoustically similar to true ALS speech. First, we
compared the distance between the untransformed and the trans-
formed speech features (MCEP, BAP, and F0) of the test speech
samples to true ALS speech (ALS speech samples in training data)
using the nonparametric Dp divergence measure [32], a measure of
distance between two distributions. In order to obtain an unbiased
measure, we used bootstrap sampling to ensure the number of sam-
ples selected from each of the estimated groups (ALS, healthy, trans-
formed) are the same. The sampling process was done 50 times, and
the final measure was obtained by averaging over all trials. The re-
sults are shown in Table 2 (Dp-divergence). A smaller value of the
Dp divergence implies that data from the two classes are more simi-
lar. The results show that the transformed speech is more similar to
true ALS speech than the healthy speech (p < 0.01).

Second, a support vector machine (SVM) was built to distin-
guish true ALS speech and healthy speech (using samples in the
training set) based on the features we developed previously for rep-
resenting the characteristics of different types of dysarthric speech
[33]. The features include: 1) long-term energy spectrum (LTAS),
which captures atypical average spectral information in the signal,
related to nasality, breathiness, and aypitcal loudness variations of
speech; 2) statistics of MFCCs (mean, std, skewness, kurtosis, range,
and median absolute deviation); 3) correlation structure features that
capture the evolution of vocal tract shape and dynamics at different
time scale via auto- and cross- correlation analysis of formant tracks
and MFCC. Since speaking rate is an obvious characteristic to sepa-
rate ALS speech from healthy speech, we excluded features related
to rhythm when building the classifier. After training, the classi-
fier was applied to the untransformed test speech samples (healthy)
and their transformations. The error rate of the resulting classifier is
shown in Table 2 (SVM Classification Results). We can see that the
model trained on true ALS and healthy speech classifies the trans-
formed samples as ALS 37.5% of the time. In contrast, the untrans-
formed healthy speech samples are only classified as ALS 2.1% of
the time.
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3.2. Subjective evaluation

Subjective evaluation was performed to examine whether the gener-
ated speech was perceptually similar to ALS speech. Five certified
SLPs with 12 years clinical experience on average, who routinely
work with dysarthric patients, were invited to make a judgement on
20 of the transformed speech samples. The 20 samples were ran-
domly selected from the 80 out-of-sample transformed phrases. The
provided instructions were: “Please determine if the speech sample
sounds more like ALS or Healthy speech. When you make your
choice, please consider if the speaker shows symptoms of ALS.”

The generated speech has audible artifacts from the vocoding
process. To determine whether the artifacts impact an SLP’s de-
cision, we mixed 10 control samples (5 healthy, 5 ALS; vocoded
only) with the 20 transformed speech samples. The control sam-
ples were generated in the following way: we used the proposed
voice conversion framework to transform each control ALS speaker
to another ALS speaker, and each control healthy speaker to another
healthy speaker. This procedure induces similar artifacts on the con-
trol speech samples. The order of the samples was randomized.

For each speech sample, we collected 5 labels from the 5 SLPs
and the results were calculated based on all labels on all samples.
The results are shown in the subjective evaluation session of Table
2. The first row shows the accuracy of the SLPs perceptual clas-
sification on the 10 control healthy and ALS samples (with artifacts
induced by the transformation). There was strong consensus on these
10 samples among clinicians, with samples correctly classified 98%
of the time. This indicates that the vocoding noises did not impact
the ability of the clinicians to correctly classify the speech samples.

The second row shows the percentage of the time that the trans-
formed speech samples were perceived as ALS. However, we no-
ticed that there was consensus (at least 4 same labels) on some of the
speech samples, but not on the others. Clinicians also said that it was
difficult to make a judgement sometimes. We assumed that for those
without consensus, clinicians may make a random guess between
ALS and healthy. Therefore, we removed those samples and calcu-
lated the result again only when there was consensus (shown in the
third row). Across all samples, 65% of the time clinicians classified
the transformed speech samples as ALS; for instances where there
was consensus among the clinicians, they were classified as ALS
76% of the time. The feedback provided by one of the participating
clinicians is as follows:

“It was a difficult choice for some of them! Some samples
sounded disordered, but not necessarily like ALS patients. I de-
faulted to ALS if rate was slow and I could not get the phonetic
content. Some of the features I detected I would describe as slowed
rate, altered resonance (hypernasality), breathy vocal quality, and
articulatory imprecision. There were some that had an unnatu-
ral/robotic/tinny quality that were deviant but not ALS-like.”

This quote highlights both the benefits and the drawbacks of the
proposed method. It is clear that some of the samples exhibit appro-
priate reductions in articulation precision, unusual resonance, and
breathy characteristics; however the transformation method also pro-
duces audible artifacts in the speech signal that must be addressed.

3.3. Pilot experiment using data augmentation

To test if the proposed data augmentation method is effective in im-
proving the performance of machine learning models, we designed
a pilot experiment to distinguish between ALS speech and ataxic
speech. Ataxia is a neurological disorder resulting from damage
to the cerebellar control circuit. Ataxic speech has some common
characteristics with ALS speech, such as imprecise phoneme articu-
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Fig. 3. Classification accuracy after data augmentation.

lation, slowed speaking rate, monopitch, and a harsh voice. It also
has its own distinct characteristics, including equal and excess stress,
irregular articulatory breakdown and excessive loudness variations.

In our dataset, there are 16 ataxic speakers and 8 ALS speakers
with each speaker reading the same 80 phrases. Studies have shown
that machine learning classification algorithms are sensitive to un-
balanced data. Therefore, we balanced the existing dataset by adding
more ALS samples which were transformed from healthy speech us-
ing the proposed conversion method. The samples were transformed
from the 8 healthy speakers in our dataset.

An SVM model was built based on the same set of features
used in the objective evaluation, plus a rhythm feature, the envelope
modulation spectrum (EMS), which is a useful indicator of atypical
rhythm patterns in pathological speech. The model was trained by it-
eratively adding one additional simulated speaker to the unbalanced
data set. Leave one-speaker (from the original dataset) out cross-
validation was used to evaluate the performance. We compared the
approach with a more traditional data augmentation method of du-
plicating the training set speakers by adding noise [34][15]. Here we
added white noise (SNR = 10dB) to the training samples. Figure 3
shows the classification accuracies when adding a different number
of augmented speakers to the original dataset. We see that the per-
formance gradually improves as additional speakers are added, and
the proposed data augmentation method significantly outperformed
the augmentation strategy of simply duplicating the training speak-
ers and adding noise. The fluctuations in the accuracy curve in the
figure is likely due to the small number of speakers used in the pilot.

4. CONCLUSION

In this paper, we proposed a new data augmentation strategy for clin-
ical speech applications by transforming healthy speech to dysarthric
speech. Our objective and subjective evaluation shows that the
generated speech are acoustically and perceptually similar to real
dysarthric speech, and the pilot classification experiment provides
evidence that the augmentation strategy helps improve performance.
However, further study is required to determine the benefits of the
simulated speech samples in building large scale machine learning
models. Future work will focus on reducing the perceptual artifacts
by exploring other deep learning models that have been shown to
be effective in voice transformation (e.g. recurrent neural networks
(RNN)) and using the resulting data to build larger machine learning
systems.
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