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ABSTRACT

Parkinson’s disease (PD) produces several speech impair-
ments in the patients. Automatic classification of PD patients
is performed considering speech recordings collected in non-
controlled acoustic conditions during normal phone calls in a
unobtrusive way. A speech enhancement algorithm is applied
to improve the quality of the signals. Two different classi-
fication approaches are considered: the classification of PD
patients and healthy speakers and a multi-class experiment to
classify patients in several stages of the disease. According
to the results it is possible to classify PD patients and healthy
controls with a AUC of up to 0.87. This work is a step for-
ward to the development of telemonitoring systems to assess
the speech of the patients.

Index Terms— Parkinson’s disease, speech impairments,
mobile devices, speech enhancement, classification.

1. INTRODUCTION

Parkinson’s disease (PD) is a neurological disorder char-
acterized by the progressive loss of dopaminergic neurons
in the mid-brain, producing several motor and non-motor
impairments in the patients [1]. The motor symptoms in-
clude, among others, bradykinesia, rigidity, resting tremor,
micrographia, and different speech impairments. The ma-
jority of PD patients develop several speech disorders [2],
which may be considered as an early sign of further motor
impairments [3]. Speech of PD patients is affected in several
dimensions including phonation, articulation, and prosody
[4]. Phonation impairments include inadequate closing of the
vocal fold and vocal fold bowing [5]. The articulation prob-
lems are mainly related to reduced amplitude and velocity of
lip, tongue, and jaw movements [6], while prosody refers to
intonation, loudness, and rhythm during continuous speech.

There has been an interest in the research community to
develop technology to monitor patients with neurodegener-
ative disorders using smartphones. For instance, a portable
system for the automatic recognition of the syllables /pa-ta-
ka/ is presented in [7]. The system consists of a tablet and a
headset to capture the speech recordings from two group of

speakers: patients with traumatic brain injuries and PD pa-
tients. The automatic recognition of /pa-ta-ka/ is performed
in the mobile device using an automatic speech recognizer.
Speech impairments are assessed using the syllable error rate.
In [8], the authors develop an application to evaluate differ-
ent PD symptoms related to dysphonia, postural instability,
bradykinesia, and tremor. The assessment of PD symptoms is
performed with a protocol to measure different motor impair-
ments in voice, gait, dexterity, and balance. Although several
motor impairments are considered, it is not clear whether the
proposed system is suitable to assess each patient individu-
ally. On the other hand, there has been progress in methodolo-
gies to classify and monitor the PD symptoms using speech.
In [9] the authors evaluated different phonation features to
classify PD patients and healthy control (HC) speakers. They
extract features from sustained vowels including stability and
periodicity, noise measures, spectral wealth, and non-linear
dynamics. Accuracies of up to 84% were reported, depend-
ing on the analyzed vowel and on the feature set. In [10], the
authors modeled different articulatory deficits in PD patients
in the rapid repetition of the syllables /pa-ta-ka/, and reported
an accuracy of 88% discriminating between PD patients and
HC speakers. Prosody features were computed in [11]. The
authors consider voiced segments as speech unit to compute
features based on the fundamental frequency F 0 contour, en-
ergy contour, duration, and pitch periods to classify PD pa-
tients and HC speakers, and to classify the patients according
to their neurological state in a 3-class approach (low, middle,
and severe) state. The authors report an accuracy of up to 74%
classifying PD patients and HC speakers, and of 37% for the
3-class problem. Recently, in [12], the authors evaluated the
effect of several feature extraction methods to classify PD pa-
tients and HC subjects in different acoustic conditions. They
concluded that the effect of acoustic conditions is not criti-
cal when train and test sets are computed with recordings in
the same scenario (matched); however, for the mismatched
scenario the impact in the classification is higher. This paper
introduces a methodology to evaluate the speech impairments
of PD patients in recordings captured with smartphones dur-
ing a normal phone call. The aim is to perform an unobtru-
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sive monitoring of the patients through speech. We consider
several approaches based on classical feature extraction to as-
sess phonation, articulation, and prosody. Additionally, we
consider a deep learning model based on convolutional neu-
ral networks (CNNs) to assess articulation impairments. A
Speech Enhancement (SE) algorithm is also applied to the
phone calls to improve the quality of the recordings. Accord-
ing to the results, prosody is the most suitable speech dimen-
sion to evaluate speech impairments of PD patients during
spontaneous speech. To the best of our knowledge this is the
first contribution considering a mismatched scenario evaluat-
ing speech impairments of PD patients under real phone con-
versations.

2. METHODS

2.1. Speech enhancement

We consider the log-minimum mean square error estimator
(logMMSE) algorithm introduced in [13] to improve the qual-
ity of the phone calls. The method finds an estimator of the
noise-free speech signal x(t) that minimizes the mean square
error between the log-spectrum of the noise-free speech sig-
nal and its estimator. We find an estimator for the enhanced
signal directly from the amplitude spectrum of the noisy ob-
servable signal y(t), multiplied by a non-linear gain function
that depends only on the a priori signal to noise ratio. The
gain function is estimated with the first 120 ms of the noisy
speech signal and updated in each silence part.

2.2. Feature extraction and classification

Three different feature sets are computed based on phonation,
articulation, and prosody analysis. Phonation features are ex-
tracted from voiced segments to model the temporal and am-
plitude variation of the vocal fold vibration. Articulation im-
pairments are modeled considering spectral measures and the
energy content of the onset/offset transitions. Prosodic im-
pairments are modeled considering the contours of the funda-
mental frequency F 0 and the energy. The code to extract the
features is freely available1 and the details about the compu-
tation of these feature sets can be found in [4] and [14].

Phonation– The phonation analysis in continuous speech
is performed by extracting voiced segments from the utter-
ance. The feature set includes seven descriptors such as jitter
and shimmer, the first and second derivatives of F 0, long term
perturbation features such as the amplitude perturbation quo-
tient and the pitch perturbation quotient and the energy. The
mean, standard deviation, skewness, and kurtosis are com-
puted from the descriptors, forming a 28-dimensional feature
vector per utterance.

Articulation– The articulatory capability of the patients
is evaluated with information from the onset/offset transitions

1https://github.com/jcvasquezc/DisVoice

to model the difficulties of patients to start/stop the move-
ment of the vocal folds. The set of features extracted from the
onset and offset include 12 Mel-Frequency Cepstral Coeffi-
cients (MFCCs) with their first and second derivatives, and
the log energy of the signal distributed into 22 Bark bands.
The first and second formant frequencies and their deriva-
tives are also considered to assess the articulation deficits of
the patients. The total number of descriptors corresponds to
87. Four functionals are also computed, obtaining a 488-
dimensional feature-vector per utterance.

Prosody– The prosody features are based on duration,
the F 0 contour and the energy contour. We compute 13 fea-
tures per utterance including the average, standard deviation,
and maximum value of F 0; the variability of F 0 expressed
in semitones; the average, standard deviation, and maximum
value of the energy contour; the voiced rate, the average and
standard deviation of the duration of voiced segments, the
pause rate, and the average and standard deviation of the du-
ration of pauses.

Classification– The automatic classification of PD pa-
tients and HC subjects is performed with a Support Vec-
tor Machine (SVM) with margin parameter C and a Gaus-
sian kernel with parameter γ. The values of C and γ are
optimized through a grid-search into powers of ten with
10−4 < C < 104 and 10−6 < γ < 103. The selection
criterion is based on the performance obtained in the training
stage. Due to the low number of speakers, the SVM is tested
following a Leave-One-Out Cross-Validation strategy.

2.3. CNN modeling

The onset and offset transitions are detected similar to the
previous articulation features. The transition is detected, and
80 ms of the signal are taken to the left and to the right of each
border, forming “chunks” of signals with 160 ms length. Each
chunk is transformed into a time-frequency representation us-
ing the short-time Fourier transform (STFT) and used as input
to a CNN [15]. The CNN extracts the most suitable features
from the STFT and makes the final decision about whether
the utterance corresponds to a PD patient or a HC speaker, or
classify the speaker according to the level of the speech item
in the third part of the Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS-III). Recti-
fier linear activation functions are used, and dropout is in-
cluded in the training stage to avoid over–fitting [16]. The
architecture of the CNN implemented in this study is summa-
rized in Figure 1. It consists of four convolutional layers, two
max-pooling layers, and two fully connected hidden layers
followed by the output layer to make the final decision us-
ing a sigmoid activation function. The CNN is trained using
the stochastic gradient descent algorithm. The cross–entropy
between the training labels y and the model predictions ŷ is
used as the loss function. In addition, the root mean square
propagation is considered as a mechanism to adapt the learn-
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Fig. 1. Architecture of the CNN implemented in this study

ing rate in each iteration. The method divides the learning
rate η by an exponentially decaying average of squared gradi-
ents [17]. CNN’s hyper-parameters are optimized following
a Bayesian optimization approach [18]. We optimize the ker-
nel size for the convolutional layers (from 3 to 7 ), the number
of feature maps (from 8 to 64), the size of the fully connected
layers (from 32 to 256), the initial learning rate (from 0.001
to 0.01), and the probability of dropout (from 0.1 to 0.7) be-
tween consecutive layers.

3. DATA

3.1. Train data

An extended version of the PC–GITA database [19] is consid-
ered to train the models. The data contain speech utterances
of 68 PD patients and 50 HC subjects balanced in age and
gender. All of them are Colombian Spanish native speakers.
The HC speakers were recorded once, while 33 of the patients
were recorded in several sessions between 2012 and 2016.
Most of the patients were recorded in two or three sessions.
The speech signals were recorded with a sampling frequency
of 44.1 kHz and 16-bit resolution. The speech recordings
were re-sampled to 16 kHz to meet the sampling frequency
of the test set. The participants pronounce a monologue ac-
cording to their daily activities, with an average duration of
79.1±43.8 seconds. Additional information about the train
data is shown in Table 1. In addition, the distributions of the
MDS-UPDRS-III score and the speech item of the same scale
are shown in Figure 2. We define three classes according to
the histogram of the speech item: zero for low level speech
impairments, one for middle stage speech impairments, and
greater than one for severe speech deficits.

Table 1. Meta-information of the training set. µ: average, σ:
standard deviation.

PD patients HC subjects
male female male female

Number of subjects 35 33 25 25
Age (µ± σ) 61.8 ± 10.5 60.1 ± 8.1 60.5 ± 11.6 61.4 ± 7.0
Age range 33–81 42–75 31–86 49–76
Disease duration (µ± σ) 8.5 ± 5.2 13.5 ± 11.8
Range of disease duration 1–20 1–43
MDS-UPDRS-III (µ± σ) 43.0 ± 22.7 37.7 ± 13.3
Range of MDS-UPDRS-III 6–93 19–71
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Fig. 2. Histograms for the complete MDS-UPDRS-III score
(left) and the item related to speech (right).

3.2. Test data

The speech of 17 PD patients (9 male, 8 female) was recorded
using the Apkinson mobile application [20]. The participants
were asked to make a phone call and sustain an spontaneous
conversation. Several speech aspects were evaluated based on
such conversations. None of the speakers in the test set were
included in the train set. The average duration of the record-
ings is 62.9±49.9 seconds. The recordings were captured us-
ing different smartphones and in different acoustic conditions
with a sampling frequency of 16 kHz. The test data contain
also 7 HC subjects whose age ranges from 51 to 79 years.

Table 2. Meta-information of the test set. µ: average, σ:
standard deviation.

PD patients HC speakers
male female male female

Number of subjects 10 7 2 5
Age (µ± σ) 60.9 ± 8.2 64.5 ± 8.6
Range of age 53-80 56-83 51-79
Range of MDS-UPDRS-III 17-69 24-41

4. EXPERIMENTS AND RESULTS

Two experiments are performed: (1) to classify PD patients
and HC subjects, and (2) to classify the patients into the three
stages defined above according to the speech item of the
MDS-UPDRS-III. The classifiers are trained with the speak-
ers from Table 1 and tested with the speakers from Table 2,
which were recorded using Apkinson. Speech recordings
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were captured in a mismatched scenario, i.e., the test set con-
siders mobile phone recordings while the train set is formed
with utterances recorded in controlled acoustic conditions.

4.1. PD detection

The SVM and CNN were tested using the original phone
calls, i.e., without the SE algorithm and the phone calls pro-
cessed with SE. The results are presented in Table 3. For the
case of the SVM, the accuracies range from 58% to 75% in
the original phone calls. The results improve in up to 21%
(absolute) when the recordings are processed with the SE
algorithm. Such improvement can be observed clearly with
the AUC obtained for each experiment. In addition, the high-
est improvement is obtained for prosody features, where the
AUC improves from 0.59 to 0.87.

Table 3. Results for classification of PD patietns and HC sub-
jects. ACC (%): Accuracy. SEN (%): Sensitivity. SPE (%):
Specificity. AUC: Area under the ROC curve. Fusion: Com-
bination of phonation, articulation, and prosody features.

Features Original Speech enhancement
ACC SEN SPE AUC ACC SEN SPE AUC

Phonation 66 76 42 0.59 71 75 50 0.66
Articulation 58 68 20 0.61 71 81 50 0.61
Prosody 58 70 28 0.59 79 88 63 0.87
Fusion 66 88 14 0.66 62 75 32 0.62
CNN 61 82 0 0.53 58 76 14 0.54

For the CNN, only the articulatory capability of the patients
was evaluated, as in previous studies [15]. The results show
that the performance of the CNN was slightly lower than for
the SVM after the SE. Although, previous experiments have
shown the suitability of the CNN to model the articulation
impairments of the patients, it seems like the CNN is not able
yet to adapt to the different acoustic conditions on the test set
given mismatched channel. This could be explained due to
the limited size of the test set.

4.2. Multi-class experiment

The automatic multi-class assessment is performed according
to the speech item of the MDS-UPDRS-III score (3.1) using
a multi-class SVM following a one vs all strategy. Class 0
includes speakers with a score of 0 (HC in the test set), class
1 includes patients with a score of 1, and class 2 includes
speakers with scores higher than 2. The optimal parameters
(C = 1; γ = 10−2) were found in an internal cross-validation
in the train set. Table 4 shows the results obtained when the
prosody features are considered. For the train set, it can be
observed that most of the speakers with a score of 0 (Class 0)
and higher than 2 (Class 2) are assigned to the correct class.
For Class 1, most of the classification errors occurs in Class
0. This result can be explained considering that a score of
1 is assigned to patients with minimal speech problems. For

the test set, all of the speakers from Class 0 are classified cor-
rectly, which indicates that the system is capable of identify
healthy speech. None of the patients from Class 1 were as-
signed to their true class, which may be explained due to the
mismatched in the acoustic conditions, or due to the class un-
balance in the train set.

Table 4. Confusion matrix obtained with the prosody features
when SE is applied. Results in %

Train set Test set
Predicted class Predicted class

Target class Class 0 Class 1 Class 2 Class 0 Class 1 Class 2
Class 0 96 2 2 100 0 0
Class 1 53 38 9 50 0 50
Class 2 29 4 67 46 0 54
Train set: Cohen’s κ: 0.56; Accuracy: 72%; UAR: 67%
Test set: Cohen’s κ: 0.31; Accuracy: 58%; UAR: 51%

5. CONCLUSIONS

A method for the unobtrusive monitoring of PD patients from
speech is presented in this paper. The speech of the patients is
captured during a phone call using smartphones during spon-
taneous conversations. Several feature sets are computed to
assess the phonation, articulation and prosody impairments.
In addition, an SE algorithm is applied to improve the quality
of the recordings. We evaluate the suitability of the proposed
methodology with two experiments: the classification of PD
patients and HC speakers and a multi-class classification ac-
cording to the speech item of the MDS-UPDRS-III scale.
The SE algorithm is suitable to improve the quality of the
speech recordings from the mobile phone and also the results
of the classification of patients given the train/test channel
mismatched acoustic conditions. Additionally, The best re-
sults were obtained when the prosody features are considered.
This result confirms that the variations of the speech during
a free conversation, which are intended to be assessed with
the phone calls are suitable to assess the speech deficits of
PD patients. Further studies may be performed with more
data from normal, spontaneous and unobtrusive conversa-
tions. Data collection using Apkinson is still ongoing, thus in
the near future we expect to perform more experiments for
further development of the mobile application.
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