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ABSTRACT

The performance of automatic speech recognition systems de-
grades with increasing mismatch between the training and testing
scenarios. Differences in speaker accents are a significant source
of such mismatch. The traditional approach to deal with multiple
accents involves pooling data from several accents during training
and building a single model in multi-task fashion, where tasks cor-
respond to individual accents. In this paper, we explore an alternate
model where we jointly learn an accent classifier and a multi-task
acoustic model. Experiments on the American English Wall Street
Journal and British English Cambridge corpora demonstrate that our
joint model outperforms the strong multi-task acoustic model base-
line. We obtain a 5.94% relative improvement in word error rate on
British English, and 9.47% relative improvement on American En-
glish. This illustrates that jointly modeling with accent information
improves acoustic model performance.

Index Terms— End-to-end models, acoustic modeling, multi-
accent speech recognition, multi-task learning

1. INTRODUCTION

Recent breakthroughs in automatic speech recognition (ASR) have
resulted in a word error rate (WER) on par with human tran-
scribers [1, 2] on the English Switchboard benchmark. However,
dealing with acoustic condition mismatch between the training and
testing data is a significant challenge that still remains unsolved. It
is well-known that the performance of ASR systems degrades sig-
nificantly when presented with speech from speakers with different
accents, dialects and speaking styles than those encountered during
system training [3]. In this paper, we specifically focus on acoustic
modeling for multi-accent ASR.

Dialects are defined as variations within a language that differ in
geographical regions and social groups, which can be distinguished
by traits of phonology, grammar, and vocabulary [4]. Specifically,
dialects may be associated with the residence, ethnicity, social class,
and native language of speakers. For example, in British and Amer-
ican English, same words can have different spellings, like favour
and favor; or different pronunciations, such as "SEdju:l in UK En-
glish vs. "skEdZUl in US English for the word schedule; in Span-
ish, vocabulary may evolve differently between dialects, like for the
phrase cell phone, Castilian Spanish uses móvil while Latin Ameri-
can use celular [5]; in English, same phoneme may be realized dif-
ferently, phoneme /e/ in dress is pronounced as /E/ in England and
/e/ in Wales; in Arabic, dialects may also differ in intonation and
rhythm cues [6]. In this paper, we focus on the issue of differing
pronunciations, while eschewing considerations of grammatical and
vocabulary differences.

Acoustic modeling across multiple accents has been explored for
many years, and various approaches can be summarized into three
categories - Unified models, Adaptive models, and Ensemble mod-
els. A unified model is trained on a limited number of accents, and
can be generalized to any accent [7,8]. An adaptive model fine-tunes
the unified model on accent-specific data assuming that the accent is
known [9–11]. An ensemble model aggregates all accent-specific
recognizers, and produces an optimal model by selection or combi-
nation for recognition [5,12,13]. Experiments have revealed that the
unified model usually underperforms the adaptive model, which in
turn underperforms the ensemble model [7, 8].

We note that these prior approaches do not explicitly include
accent information during training, but do so only indirectly, for
example, through the different target phoneme sets for various ac-
cents. This contrasts sharply with the way in which humans memo-
rize the phonological and phonetic forms of accented speech: “men-
tal representations of phonological forms are extremely detailed,”
and include “traces of individual voices or types of voices” [14]. In
this paper, we propose to link the training of ASR acoustic models
and accent identification models, in a manner similar to the linking
of these two learning processes in human speech perception. We
show that this joint model not only performs well on ASR, but also
on accent identification when compared to separately-trained mod-
els. Given the recent success in end-to-end models [15–25], we use
a bidirectional long short-term memory (BLSTM) recurrent neural
network (RNN) acoustic model trained with the connectionist tem-
poral classification (CTC) loss function for acoustic modeling. The
accent identification (AID) network is also a BLSTM, but includes
an average pooling layer to compute an utterance-level accent em-
bedding. We also introduce a joint architecture where the lower lay-
ers of the network are trained using AID as the auxiliary task while
multi-accent acoustic modeling remains the primary task of the net-
work.

Next, we use the AID network as a hard switch between the
accent-specific output layers of the CTC AM. Preliminary experi-
ments on the Wall Street Journal American English and Cambridge
British English corpora demonstrate that our joint model with the
AID-based hard-switch achieves lower WER when compared with
the state-of-the-art multi-task AM. We also show that the AID model
also benefits from joint training.

The remainder of this paper is organized as follows: Section 2
reviews relevant literature. Section 3 introduces our AID model,
multi-accent acoustic model, and switching strategy. Section 4
shows experiments and analysis, followed by the conclusion in
Section 5.
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2. RELATED WORK

The most closely related work to ours is from [8], which illustrated
that hierarchical grapheme-based AM with auxiliary phoneme-based
AMs in four English dialects trained with CTC significantly outper-
formed accent-specific AMs and grapheme-based AM, respectively,
while achieving competitive WER with phoneme-based multi-accent
AM. Similarly, Yi et al [11] also trained a multi-accent phoneme-
based AM with CTC loss, but instead, adapted accent-specific output
layer using its target accent.

Other relevant work compared the performance of training ac-
cent or dialect specific acoustic models and joint models. These
approaches predicted context-dependent (CD) triphone states using
DNNs, and used a weighted finite state transducer (WFST)-based
decoder. For example, senones on accents of Chinese are predicted
by assuming all accents within a language share a common CD state
inventory [9,10]. Elfeky et al [7] implemented a dialectal multi-task
learning (DMTL) framework on three dialects of Arabic using the
prediction of a unified set of CD states across all dialects prediction
as the primary task and dialect identification as the secondary task.
DMTL model deviated from ours in that it directly predicted CD
states using convolutional-LSTM-DNNs (CLDNN), and was trained
with either cross-entropy or state-level minimum Bayes risk, while
ignoring the secondary dialect identification output at recognition
time. This DMTL model was trained on all dialectal data and under-
performed the dialect-specific model. Dialectal knowledge distilled
(DKD) model was also designed in [7], which achieved results com-
petitive to, but below, dialect-specific models.

The effectiveness of dialect-specific models motivated investiga-
tions into how to use ensemble methods on multiple dialect-specific
acoustic models for recognition. Soto et al [5] explored approaches
of selecting and combining the best decoded hypothesis from a pool
of dialectal recognizers. This work is still different from ours in
that we make our selection directly using predicted dialect. Huang
et al [3] used a similar strategy to ours by identifying accent first
followed by acoustic model selection, however, this work only con-
sidered GMMs as the classifier.

3. METHOD

Our proposed system consists of multiple accent-specific acoustic
models and accent identification model. We will describe these com-
ponents and their joint model in this section. Acoustic model se-
lection based on the hard-switch between accent-specific models is
illustrated in Section 3.4.

3.1. Accent Identification

Accurate identification of a speaker’s accent is essential to the
pipelined ASR systems, since accent identification (AID) errors can
cause large mismatch to acoustic models. Given the hypothesis
that accents can be discriminated by spectral features, researchers
have attempted to model the spectral distribution of each accent
using GMMs. Recently, DNNs have been explored as a much
more expressive model compared to GMMs, especially in modeling
probability distributions.

We implemented an independent AID that summarizes low-level
acoustic features of an utterance by a stack of bidirectional LSTMs
(BLSTMs) and DNN projection layers. An average-pooling layer is
applied on top of transformed acoustic features, because the acous-
tic realization of a speaker’s accent may not be observable in each
frame. Applying average-pooling gives us a more robust estimate of

accent-dependent acoustic features. We note that we assume that the
speaker’s accent is fixed over the entire utterance.

Figure 1 depicts details of this AID model. A single sigmoidal
neuron is used at the output layer for classification because we
are only classifying between accents of English - US and UK. We
trained the AID network using the cross-entropy loss function.

Sigmoid

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Averaged Pooling

DNN DNN DNN DNN

DNN DNN DNN DNN

Cross 
Entropy

Fig. 1: Proposed accent identification (AID) model with BLSTMs
and average-pooling.

3.2. Multi-Accent Acoustic Modeling

Recently, end-to-end (E2E) systems have achieved comparable
performance to traditional pipelined systems such as hybrid DNN-
HMM systems. These E2E systems come with the benefit of avoid-
ing time-consuming iterations between alignment and model build-
ing. RNNs using the CTC loss function are a popular approach to
E2E systems [15]. The CTC loss computes the total likelihood of
the output label sequence given the input acoustics over all possible
alignments. It achieves this by introducing a special blank symbol
that augments the label sequence to make its length equal to the
length of the input sequence. Clearly, there are multiple such aug-
mented sequences, and CTC uses the forward-backward algorithms
to efficiently sum the likelihoods of such sequences. The CTC loss
is

p(l|x) =
∑

π∈B−1(l)

p(π|x) (1)

where l is the output label sequence, x is the input acoustic sequence,
π is a blank-augmented sequence for l, and B−1(l) is the set of all
such sequences. During decoding, the target label sequences can be
obtained by either greedy search or a WFST-based decoder.

Our multi-accent acoustic model combines two CTC-based
AMs, one for each accent. We applied multiple BLSTM lay-
ers shared by two accents to capture accent-independent acoustic
features, and placed separate DNNs for each AM to extract accent-
specific features. Figure 2 describes the structure of multi-accent
acoustic model. Both AMs are jointly trained with an average of the
two accent-specific CTC losses.

At test time, this multi-accent model requires knowledge of the
speaker’s accent to pick out of the two accent-specific targets. We
experimented with both the oracle accent label, and using a trained
AID network to make this decision.
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Fig. 2: This figure shows the multi-accent acoustic model.

3.3. Joint Acoustic Modeling with AID

The previous multi-accent model assumes that multi-tasking be-
tween the phone sets of the two accents is sufficient to make the
network learn accent-specific acoustic information. An alternate
approach is to explicitly supervise the network with accent informa-
tion. This leads us to our joint model, with multi-accent acoustic
modeling as primary tasks at higher layers, and with AID as an
auxiliary task at lower level layers, as shown in Figure 3. This joint
model aggregates two modules with the same structures to the fore-
mentioned models in Section 3.1 and 3.2, and can be jointly trained
in an end-to-end fashion with the objective function,

min
Θ
LJoint(Θ) = (1− α) ∗ LAM(Θ) + α ∗ LAID(Θ)

where α is an interpolation weight balancing between CTC loss of
multi-accent AMs and the cross-entropy loss of AID, and Θ is the
model parameters. CTC loss LAM sums up the probabilities of all
possible paths corresponding to Equation (1), while AID classifica-
tion lossLAID is cross-entropy. The two losses are at different scales,
so the optimal value of α needs to be tuned on development data.

BLSTMs

BLSTMs

DNNs

DNNs

CTC Loss

DNNs

CTC Loss

American British

sigmoid

Cross Entropy

dialect identification

Fig. 3: Proposed joint model for accent identification and acoustic
modeling.

3.4. Model Selection by Hard-Switch

Given a trained CTC-based multi-accent acoustic model and AID
classifier, we apply maximum likelihood estimation to switch be-
tween the accent-specific output layers yUS and yUK. LetPAID(US|x)
denote the probability of the US accent estimated by AID. We

threshold this probability at 0.5 to obtain the accent hard-switch
sAID(US|x). Hence, we pick the output layer as follows:

y =

{
yUS if sAID(US|x) = 1
yUK else

We note that this strategy applies to both the multi-accent model
and the joint model.

4. EXPERIMENTS

We perform experiments on two dialects of English corpora–Wall
Street Journal-1 American English and Cambridge British English.
They contain overlapping, but distinct phone sets of 42 and 45
phones respectively. Both corpora contain approximately 15 hours
each of audio. We held-out 5% of the training data as a development
set. The window size of each speech frame is 25ms with a frame shift
of 10ms. We extracted 40-dimensional log-Mel scale filter banks
and performed per-utterance cepstral mean subtraction. We did not
use any vocal tract length normalization. We then stacked neighbor-
ing frames and picked every alternate frame to get a 80-dimensional
acoustic feature stream at half the frame rate. Various models are
compared in terms of phone error rate (PER) and word error rate
(WER). Particularly, we obtain the PER after simple frame-wise
greedy decoding from the DNN projection outputs after removing
repeated phones and the blank symbol. The Attila toolkit [26] is
used to report WER by applying WFST-based decoding. Evaluation
is performed on eval931 American English and si dt5b2 British
English.

Our joint model uses four BLSTM layers where the lowest layer
is attached to the AID network and the highest single layer connects
to two accent-specific softmax layers. A single DNN layer with 320
hidden units is used for each task. The weights for all models are
initialized uniformly from [−0.01, 0.01]. Adam [27] optimizer with
initial learning rate 5e − 4 is used, and the gradients are clipped
to the range [−10, 10]. We discard the training utterances that are
longer than 2000 frames. New-bob annealing [28] on the held-out
data is used for early stopping, where the learning rate is cut in half
whenever the held-out loss does not decrease. For the purpose of fair
comparison, we used a four layer BLSTM for the baseline acoustic
models as well.

Various models are briefly described as follows:

• ASpec: phoneme-based accent-specific AMs that are trained
separately on mono-accent data.

• MTLP: phoneme-based multi-accent AMs that are jointly
trained on two accents.

• Joint: proposed phoneme-based joint acoustic model with
AID.

4.1. Empirical weights for balancing different losses

Our joint model is sensitive to the interpolation weight α between
the AM CTC and AID cross-entropy losses. We tuned α on de-
velopment data. Figure 4 depicts relationship between overall PER
of two accents and different α values. When α goes larger, overall
PER increases but with small fluctuations, especially at α of 0.01
and 0.2. The PER tends to be the largest if α is 1.0, which is ex-
pected since the weights of neural networks are updated only using
the AID errors. We found the optimal value of α to be 0.001, which

1catalog.ldc.upenn.edu/ldc93s6a
2catalog.ldc.upenn.edu/LDC95S24
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Fig. 4: PER of joint acoustic model over AID loss weights α

Fig. 5: Accuracy of AID over various AID weights α

achieved minimum PER of 12.02%. Figure 5 illustrates the trend of
AID accuracy over different α values. Weights between 0.001 and
0.8 all perform well with accuracies greater than 92%, while tail val-
ues lead to even worse performance. When α is 0.5 and 0.005, the
best performance is achieved with 97.77% accuracy.

4.2. Oracle performance for multi-accent acoustic models

We first evaluate the oracle performance of various models in Ta-
ble 1. These results assume that the correct accent of each utterance
is provided for all models. In other words, the acoustic model
corresponds to the correct accent, i.e. the relevant target accent-
specific softmax layer is used. It can be seen that the proposed joint
model significantly outperforms the accent-specific model (ASpec)
by 17.97% relative improvement in overall WER, and multi-task ac-
cent model (MTLP) by 6.81%. This observation indicates that deep
BLSTM layers shared with multiple accent AMs can learn expres-
sive accent-independent features that refine accent-specific AMs.
The auxiliary task, accent identification, also helps by introducing
extra accent-specific information. The advantage of augmenting
general acoustic features with specific information both implicitly
learned by our joint model is observed in natural language process-
ing [29] tasks as well. The value of implicit feature augmentation is
a rich area for future investigation.

4.3. Hard-switch using distorted AID

The oracle experiments in Section 4.2 demonstrate the value of our
proposed joint model and the MTLP model when the AID classifier
operates perfectly. This section demonstrates the impact of imper-
fect AID on the performance using hard-switch. Table 2 shows the

Table 1: Oracle performance in word error rates that assumes that
the true accent ID is known in advance. Word error rates is calculated
after decoding with a WFST-graph incorporating a LM; the relative
improvement (rel.) for each model over ASpec are reported in the
parenthesis.

corpus ASpec MTLP (rel.) Proposed Model (rel.)
British 11.5 10.1 (-12.17) 9.5 (-17.39)

American 10.2 9.0 (-11.76) 8.3 (-18.63)
average 10.85 9.55 (-11.98) 8.9 (-17.97)

results. Given a well-trained independent AID (ind. AID), our joint
model still significantly outperforms the two baseline models, and
MTLP achieves better WER than ASpec. In comparison to oracle
WERs of all models, British WERs are relatively constant without
any distortion, however, American English WERs deteriorate ac-
cordingly. This is because independent AID has 100% recall for
British English utterances on the test data.

It is interesting to note that the biggest improvement over ASpec
in WER comes when using the joint model (21.62%) instead of the
MTLP model (14.41%) with an independent AID model. The im-
provement upon further using the AID from the joint model itself is
still larger (22.52%). This indicates that the joint model has already
learned sufficient accent-specific information through the accent su-
pervision in the lower layers.

Table 2: WERs of hard-switch using distorted AID. The rel. shows
the relative improvement over ASpec; ind. AID applies an indepen-
dent neural AID trained separately. Our Proposed Model applies the
AID jointly learn with multi-accent AMs.

Corpus Pipelines with ind. AID Proposed
ASpec MTLP (rel.) Joint (rel.) Model (rel.)

British 11.5 10.1 9.5 9.5
(-12.17) (-17.39) (-17.39)

American 11.1 9.5 8.7 8.6
(-14.41) (-21.62) (-22.52)

5. CONCLUSION

This paper studies state-of-the-art approaches of acoustic modeling
across multiple accents. We note that these prior approaches do
not explicitly include accent information during training, but do so
only indirectly, for example through the different phone inventories
for various accents. We propose an end-to-end multi-accent acous-
tic modeling approach that can be jointly trained with accent iden-
tification. We use BLSTM-RNNs to design acoustic models that
can be trained with CTC, and apply an average pooling to com-
pute utterance-level accent embedding. Experiments show that both
multi-accent acoustic models and accent identification benefit each
other, and our joint model using hard-switch outperforms the state-
of-the-art multi-accent acoustic model baseline with a separately-
trained AID network. We obtain a 5.94% relative improvement in
WER on British English, and 9.47% on American English.
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[29] Hal Daumé III, “Frustratingly easy domain adaptation,” arXiv
preprint arXiv:0907.1815, 2009.

5993


