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ABSTRACT
In this paper, we extend our previous work on direct recognition of
single-channel multi-talker mixed speech using permutation invari-
ant training (PIT). We propose to adapt the PIT models with aux-
iliary features such as pitch and i-vector, and to exploit the gender
information with multi-task learning which jointly optimizes for the
speech recognition and speaker-pair prediction. We also compare
CNN-BLSTMs against BLSTM-RNNs used in our previous PIT-
ASR model. The experimental results on the artificially mixed two-
talker AMI data indicate that our proposed model improvements can
reduce word error rate (WER) by ∼10.0% relative to our previous
work for both speakers in the mixed speech. Our results also con-
firm that PIT can be easily combined with advanced techniques to
improve the performance on multi-talker speech recognition.

Index Terms— permutation invariant training, multi-talker
speech recognition, speaker adaptation, auxiliary features

1. INTRODUCTION

Over the past few years, due to the advances in deep learning tech-
nology, the performance on single-talker speech recognition has
been significantly improved and has even reached human parity in
some scenarios once considered very difficult [1]. However, we still
suffer from obvious degradations on automatic speech recognition
(ASR) performance when the interfering signals, such as back-
ground noise, reverberation and speech from other talkers, cannot
be ignored.

In this paper, we focus on the scenario where multiple talkers
speak at the same time and only a single channel of mixed speech
is available. Many attempts have been made to attack this problem,
but the results so far are still far from satisfaction [2, 3]. The main
difficulty comes from the “label ambiguity” or “label permutation”
problem. In recent years, many works have been conducted to ad-
dress this problem. Weng et al. [4] adopted a deep learning model
to recognize the mixed speech directly by assigning the senone la-
bels of the talkers according to the energy of the speech. To deal
with the speaker switch problem, a two-talker joint-decoder with a
speaker switching penalty was used to trace speakers. Hershey et al.
[5, 6] proposed a technique called deep clustering (DPCL) to sepa-
rate the speech streams by mapping a speaker’s time-frequency bins
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into an embedding space where the bins belong to the same speak-
ers are close and that of different speakers are far away from each
other. Chen et al. [7] used a technique called deep attractor network
(DANet) which learns a high-dimensional embedding of the acous-
tic signals and clustered embeddings with attractor points. Yu et al.
[8, 9, 10, 11, 12, 13, 14] proposed a simple and effective technique
named permutation invariant training (PIT) which trains a deep neu-
ral network by minimizing the average minimum error with the best
output-target assignment at the utterance level.

Despite the progresses made in monaural multi-talker speech
recognition, the word error rates (WER) reported in previous works
are still much higher than that in single-talker cases [5, 9]. In single-
talker speech recognition, speaker adaptation reduces the mismatch
between the training and the test speakers and improves the WER
for the test speakers. There are several categories of neural net-
work adaptation techniques for single-talker speech recognition [15].
One approach is to adapt the acoustic features through the feature
space transformation, such as CMLLR (or fMLLR) [16]. Another
approach is adapting all or a subset of parameters of neural networks
[15, 17, 18, 19]. The third approach uses auxiliary features in an
adaptive training mode and makes the model aware of the variations.
The auxiliary features can be i-vector for speaker [20], noise code
for noise [21], and T60 for reverberation [22].

In this paper, we investigate how adaptation techniques perform
on monaural multi-talker speech recognition. The auxiliary feature
assisted adaptive training is developed for the PIT-ASR model [9].
The assumption is that the appropriate speaker-dependent feature
and structure can make the speaker tracing easier in PIT and lead
to better recognition accuracy. The auxiliary features explored here
include pitch and i-vectors of the mixed utterance. We also pro-
pose to exploit the gender information in the mixed speech with a
multi-task learning architecture that jointly optimizes for the speech
recognition and gender-pair prediction. Significant WER reduction
is observed on the artificially mixed AMI data with these model im-
provements.

The rest of the paper is organized as follows. In Section 2 we
introduce permutation invariant training for monaural multi-talker
speech recognition. In Section 3 we describe the convolutional neu-
ral network (CNN)-long short-term memory (LSTM) recurrent neu-
ral networks (RNNs). We describe the auxiliary feature based PIT
adaptation technique and the multi-task learning framework in Sec-
tion 4, and present experimental results in Section 5. We conclude
the paper in Section 6.
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2. PERMUTATION INVARIANT TRAINING FOR
MULTI-TALKER SPEECH RECOGNITION

We assume that a linearly mixed single microphone signal y[n] =∑S
s=1 xs[n] is given, where xs[n], s = 1, · · · , S are S streams of

speech sources from different speakers. The goal is to separate and
recognize these streams. In the case of S >= 2, assigning the cor-
rect target to the corresponding output layer could be difficult be-
cause speech sources are symmetric given the mixture (i.e., x1 +x2

equals to x2 + x1 when x1 and x2 have the same characteristics),
which is referred to as the “label permutation problem”.

In our previous work [9], a deep bidirectional LSTM takes fea-
tures Y of the mixed speech y as inputs, and outputs S individual
speech streams Os, s = 1, · · · , S, which is the output segment for
stream s. In the training process, we adopt PIT and minimize the
objective function

J =
1

S
min

s′∈permu(S)

∑
s

∑
t

CE(ℓs
′

t ,Os
t ), s = 1, · · · , S (1)

where permu(S) is a permutation of 1, · · · , S. The architecture
of PIT-ASR model is shown in Figure 1. Note that PIT automati-
cally finds the appropriate assignment no matter how the labels are
ordered, and solves the label permutation problem and speaker trac-
ing problem by computing the cross entropy (CE) over the whole
sequence for each assignment. Compared to DPCL [5] or DANet
[7], this structure is much simpler and more compact since it allows
direct multi-talker mixed speech recognition without explicit sepa-
ration. After the PIT model training, the individual output posterior
streams can be used for decoding as normal to obtain the final recog-
nition result.

3. CONVOLUTIONAL NEURAL NETWORK - LONG
SHORT-TERM MEMORY NEURAL NETWORK WITH PIT

Considering that the recurrent neural networks (RNNs) can take ad-
vantage of the long-range dependency and improve speaker tracing,
we used a pure deep bidirectional LSTM-RNN (BLSTM-RNN) in
our previous work [9, 11]. The convolutional neural network (CNN),
as an alternative neural network structure, has shown promising re-
sults in some single-talker speech recognition tasks [23, 24, 25, 26].
The speech signals have structures along both time and frequency
axes. However, conventional RNNs only model correlation along
the time axis and ignore the structure along the frequency axis, which
contains useful information for speaker tracing. In this work we in-
troduce the convolutional operation into the PIT-ASR model. The
model uses convolutional operations to extract shift-invariant fea-
tures from speech signals and BLSTMs to perform speaker tracing
and speech separation and recognition, as shown in Figure 2. This
CNN-BLSTM architecture computes

H0 = Y (2)

Hi = CNNi(Hi−1), i = 1, · · · , NC (3)

Hf
i = LSTMf

i (Hi−1), i = NC + 1, · · · , NR (4)

Hb
i = LSTMb

i (Hi−1), i = NC + 1, · · · , NR (5)

Hi = Stack(Hf
i ,H

b
i ), i = NC + 1, · · · , NR (6)

Hs
o = Linear(HNR), s = 1, · · · , S (7)

Os = Softmax(Hs
O), s = 1, · · · , S (8)

where H0 is the input, NC and NR are the layer indices of the last
CNN and LSTM layers. LSTMf

i and LSTMb
i are the forward and

backward LSTMs at hidden layer i respectively. Hs
o, s = 1, · · · , S

is the excitation at output layer for each speech stream s. Note that,
each output layer represents an estimate of the senone posterior prob-
ability for a speech stream. No additional clustering or speaker trac-
ing is needed. The acoustic model is trained by minimizing the ob-
jective function as in Eq (1).

4. AUXILIARY FEATURE ASSISTED ADAPTATION

4.1. Speaker Characterizing Features

We conjecture that making the multi-talker model speaker-aware can
help speaker tracing and improve speech separation and recognition.
For this reason, we explored speaker adaptation techniques for the
PIT-ASR model with speaker characterizing features such as pitch,
i-vector, and gender-pair.

Pitch is important information to differentiate speakers. For ex-
ample, the F0 of female is usually higher than that of male. In this
work, pitch is used as an auxiliary feature. Various pitch estimators
have been developed[27, 28, 29, 30]. In our experiment, we used
Kaldi [31] to extract pitch features from the mixed speech. The ba-
sic idea is to find the lag values that maximize the Normalized Cross
Correlation Function (NCCF). The output of the pitch extraction tool
is the pitch and NCCF at each frame.

i-vector is considered good representation of speaker identity
and is widely used to recognize speakers [32]. Recently, it has been
used in speaker adaptation of single-talker speech recognition [33].
To extract i-vectors, we first derive a super-vector M from the uni-
versal background model (UBM) to represent the combination of
speaker and session. The probability model of the super-vector is

M = m+Tw (9)

where m is a speaker- and session-independent super-vector, T is a
low rank matrix which captures the speaker and session variability,
and i-vector is the posterior mean of w. In this work, we integrate
the i-vector estimated from the mixed-speech into PIT-ASR model,
and make the multi-talker model speaker-aware.

4.2. Adaptive Training with Auxiliary Information

To adapt the acoustic model to a certain speaker-pair, we can provide
the acoustic model with speaker characterizing features as auxiliary
features. For BLSTM-RNNs, this is done by simply augmenting the
speech features with auxiliary features. For CNN-BLSTMs, how-
ever, things are a little bit more complicated. This is because directly
applying convolutional operations to i-vectors is not effective [34].
To solve this problem, we add a transformation layer, shown as the
bottom-right dashed rectangular in Figure 2, to convert the auxiliary
features YAux to an intermediate representation. The transformed
representation is combined with the feature maps from the convolu-
tional layers and fed into the following BLSTM layers.

4.3. Exploit Gender-pair Information with Multi-Task Learn-
ing

The vocal tract lengths for males and females are notably differ-
ent. However, they are very close for same-gender speakers. It has
been reported that multi-talker speech separation [35] and recog-
nition [11] are much harder on same-gender mixed speech than on
opposite-gender mixed speech. One solution, which would make
the system very complex, is to train a separate model for each
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Fig. 1. Two-talker speech recognition with permutation invariant
training
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Fig. 2. Auxiliary-feature assisted adaptive PIT-ASR model with
CNN-BLSTMs

gender combination. In this work, we take a different yet sim-
pler solution by providing gender-pair information to the model
at training time. More specifically, the gender-pair is encoded
as a 3-dimensional one-hot vector to represent the conditions of
Male+Male, Female+Female, Opposite-Gender.

In the adaptation technique described in Section 4.2, we need to
estimate the auxiliary feature in both training and testing. However,
it is extremely hard, if not impossible, to reliably estimate features,
such as the gender-pair vector, given only the mixed speech during
testing.

To address this problem, we propose a multi-task learning
framework to exploit the gender-pair information without estimating
them during testing. More specifically, we train the PIT-ASR model
with an additional gender classification task. The cross entropy cri-
terion is used for this additional task and the final objective function
is

JMTL = J + λ
∑
t

CE(ℓ2nd
t ,O2nd

t ) (10)

where JMTL is the criterion for multi-task learning, ℓ2nd and O2nd

are labels and model predictions for the second task, and J is the
major task using the PIT criterion (Eq (1)). The hyper-parameter
λ can be tuned on a development set. The structure of the multi-
task training component is shown as the top-right dashed rectangular
in Figure 2. After model training, the parameters and components
related only to the secondary task can be removed and the model can
be evaluated without estimating the auxiliary information (such as
the gender-pair vector) related to the secondary task.

5. EXPERIMENTS

To evaluate the proposed methods, we train and test the models on
our released artificially mixed two-talker AMI IHM corpus [11]. The
80hr training subset is used in this work for fast evaluation, and the
8hr two-talker mixed speech with all SNR levels is used in evalu-

ation. Additional details on the multi-talker speech corpus can be
found in [11].

Kaldi [36] is used for pitch and i-vector extraction. 3-dimensional
pitch features are extracted from the mixed speech with all the pa-
rameters set to default values. The i-vector extractor is trained using
13-dimensional MFCC of all the data in the training set of over
100 speaker pairs. The UBM has 2048 diagonal Gaussians, and the
dimension of i-vectors is 10. The basic acoustic features used in
training all the PIT models are 40-dimensional log filter bank. All
neural network acoustic models are trained using the Microsoft Cog-
nitive Toolkit (CNTK) [37] using 1-bit SGD [38] on 2 GPUs. The
learning rate is 2e − 4 and gradients are clipped with the threshold
3e− 4.

In the decoding, we use a 50K-word dictionary and a trigram
language model interpolated from the ones created using the AMI
transcripts and the Fisher English corpus. For scoring, we evaluate
the hypotheses pairwisely against the two references, and make the
assignment with better WER as the final recognition results for each
utterance.

5.1. PIT-ASR with CNN-BLSTMs

Firstly we construct the normal PIT-ASR model, that introduced in
our previous work [9], as the baseline. It is a 6-layer BLSTM-RNN
with 768 memory cells in each layer. The output of the last LSTM
layer is sent directly to two output layers with softmax activation,
representing two recognition streams. These two outputs are then
used in decoding to obtain the hypotheses for two talkers. The base-
line results are shown at the top of Table 1. Our proposed PIT-ASR
model can recognize multi-talker speech directly. However, com-
pared to the normal single-talker ASR on AMI IHM (around 27.0%
WER without adaptation), there is still a large gap for both speakers.
We also show WERs under different gender combinations. It is ob-
served that the recognition accuracy is significantly worse when the
two speakers are of the same gender.

The CNN-BLSTM contains 2 convolutional layers followed by
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4 bidirectional LSTM layers. The input feature map is 11× 40. The
two convolutional layers apply a 9× 9 kernel with stride 1× 1 and a
3× 3 kernel with stride 2× 2, respectively. There are 32 and 64 fea-
ture maps in the two convolutional layers respectively. The number
of memory cells is 768 in each LSTM layer. The results are reported
at the bottom of Table 1. We can observe that the CNN-BLSTM
model outperforms the BLSTM-RNN model by ∼6.0% relatively.

Table 1. WER (%) of the PIT-ASR model with different model
structures and gender combinations

Model Gender Combination WER 1 WER 2

BLSTM
All 55.21 64.23

opposite 52.41 61.61
same 58.48 67.27

CNN-BLSTM
All 51.93 60.13

opposite 49.40 57.90
same 54.89 62.72

5.2. PIT with auxiliary feature based adaptation

The auxiliary feature based adaptation is evaluated. Pitch and i-
vectors are used as auxiliary features in this architecture. Their in-
tegration with the PIT-ASR model is illustrated in Figure 2. For
the BLSTM-RNN model, the auxiliary features are stacked with the
FBank feature directly. In the CNN-BLSTM model, however, the
auxiliary features are transferred through a 256-cell hidden layer and
then stacked with the outputs of the CNN layers. From Table 2 we
can observe that both pitch and i-vector can improve the recognition
accuracy although they are both estimated from the mixed speech,
and i-vector is more effective than pitch. We conjecture that the aux-
iliary features estimated from the mixed speech helps because these
features provide adaptive bias to the model as discussed in [39]. As
long as these features are consistent and provide information better
performance can be expected.

Moreover, the combination of multiple auxiliary features leads
to slight additional gain. Overall, the auxiliary feature based adapta-
tion achieved relative 8.0% WER reduction on both speakers against
the baseline.

Table 2. WER (%) of PIT-ASR with auxiliary feature based adapta-
tion

Model Adapt on WER 1 WER 2

BLSTM

— 55.21 64.23
pitch 51.88 60.54

i-vector 51.61 59.99
pitch + i-vector 51.29 59.78

CNN-BLSTM pitch + i-vector 50.64 58.78

5.3. Exploit gender-pair information with multi-task Learning

As described in Section 4.3, the gender-pair prediction can be used
as a second task to improve the system performance. In our experi-
ments the λ in Eq (10) is set to 0.3. The results, shown in Table 3,
indicate that multi-task learning with gender-pair estimation signifi-
cantly outperforms the baseline accuracy reported in Table 1.

We further combine the auxiliary-feature based adaptation and
the multi-task learning in an integrated framework as illustrated in
Figure 2. The results reported in Table 3 show that the combined
architecture further improves the performance, and the best system
reduces WER by ∼10.0% relative to the baseline.

Table 3. WER (%) of PIT-ASR with multi-task learning

Model 2nd Task Adapt on WER 1 WER 2

BLSTM
— — 55.21 64.23

gender — 52.47 60.31
pitch+i-vector 51.11 59.35

CNN-BLSTM
— — 51.93 60.13

gender — 51.10 58.76
pitch+i-vector 50.21 58.17

6. CONCLUSION

In this paper, we extended our previous work on permutation in-
variant training for monaural multi-talker speech recognition. We
showed that CNN-BLSTMs outperform BLSTM-RNNs with a big
margin for both speakers in this task. We developed and evaluated
the auxiliary feature assisted adaptation technique for the PIT-ASR
model. Two types of auxiliary features, namely pitch and i-vector,
were explored and evaluated. We further proposed to exploit the
gender-pair information in the multi-task learning framework to im-
prove the recognition accuracy. The results on the artificially mixed
two-talker AMI corpus show that all the auxiliary features and the
adaptation architectures help to boost recognition accuracy. The fi-
nal framework with all ingredients integrated achieved the best per-
formance. Our results also confirm that PIT can be easily com-
bined with advanced techniques, such as the adaptation and multi-
task learning evaluated in this work, to improve the performance on
multi-talker speech recognition. This is an attractive property that
makes PIT a nice modeling technique for multi-talker speech recog-
nition.
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