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ABSTRACT

This paper presents our exploration into teacher-student (TS) train-
ing for acoustic models (AMs) based on the lattice-free maximum
mutual information technique. Whereas most previous studies of
TS training used a frame-level distance between teacher and student
models’ distributions, we propose using the sequence-level temper-
atured Kullback-Leibler divergence as a metric for TS training. In
our experiment on the AMI meeting corpus, we prepared a strong
teacher model consisting of a convolutional neural network, time de-
lay neural network, and long short-term memory, which had 47.7M
parameters and achieved a state-of-the-art word error rate (WER)
of 18.05%. Whereas the small student AM (10.8M params. and
19.72% WER) trained by a frame-level TS training was able to fill
only 43% of the WER gap between teacher and student AMs, the stu-
dent AM trained by the proposed method achieved a 18.23% WER,
filling 89% of the WER gap from the teacher AM. We also show
that the frame-level TS training sometimes even degrades the per-
formance of the student model whereas the proposed method con-
sistently improved the accuracy.

Index Terms— Deep learning, acoustic model, distillation,
lattice-free MMI

1. INTRODUCTION

Teacher-student (TS) training is a technique to train a small student
model that imitates a large and accurate teacher model [1, 2]. Be-
cause recent research into deep neural network (DNN)-based acous-
tic models (AMs) has suggested that very deep and complicated
models achieve good results in many cases (such as deep convolu-
tional neural networks (CNNs) [3], a combination of a CNN, long
short-term memory (LSTM), and DNN [4, 5], or a combination of a
time delay neural network (TDNN) and LSTM [6–8]), model com-
pression techniques like TS training are worth pursuing for small-
footprint and fast decoding.

Most studies on TS training have used frame-level Kullback-
Leibler (KL)-divergence between teacher and student AMs as a
training metric [1, 2, 9–12]. This is reasonable when the AM is
trained on the basis of a frame-level criterion, such as the cross
entropy (CE) loss. However, the best AMs are normally achieved
by a sequence-level criterion, such as maximum mutual information
(MMI), state-level minimum Bayes risk (sMBR) [13,14], or recently
proposed lattice-free MMI (LFMMI) [15]. To imitate the sequence-
level quality of the teacher model, a sequence-level criterion should
be used for TS training as well. The idea of using sequence-level
KL divergence for TS training was first proposed by Kim and Rush
for neural machine translation [16]. At around the same time, Wong
and Gales proposed the same idea for MMI and sMBR DNN-HMM
AMs [17]. Although they showed very promising results, their
method relied on several approximations with additional N-best

generation. Very recently, we showed a simpler, non-approximated
form of error calculation of the sequence-level KL divergence based
TS training [18]. In that work, we also presented an implementation
that does not require any N-best or lattice generation by using a tech-
nique devised for LFMMI. In our experiment, our method achieved
a good gain by TS training for LFMMI AMs, but an unignorable gap
between teacher and student AMs still remained after TS training.

To overcome the above challenges, this paper presents our re-
cent efforts on TS training based on a sequence-level criterion. First,
we extend our previous work [18] by incorporating the tempera-
ture parameter into the sequence-level KL divergence. The tem-
perature parameter was first introduced for TS training by Hinton
et al. [2] to make the softmax output softer (i.e., more informative),
which is known as “knowledge distillation.” Their method was for
frame-level criterion, so we extended the idea to the sequence-level
KL divergence and explored the effectiveness of the temperature. 1

We also conducted a comprehensive exploration into TS training on
LFMMI AMs by changing various parameters, such as training crite-
ria, learning rates, initialization techniques, and student model sizes.
Especially, we found that the frame-level TS training was sometimes
even harmful, which has not been mentioned in previous literature.

Our experiments were based on LFMMI (purely sequence train-
ing) because of its state-of-the-art accuracy in many scenarios [8,
15, 19]. Because of its unique property that the AM does not have
softmax output, some additional considerations are required for TS
training in LFMMI. We discuss these details in Section 3.1.

2. LFMMI TRAINING OF AM

In MMI training, a neural-network parameter θ is estimated to max-
imize the criterion as follows.

FMMI(θ) =
∑
u

logPθ(Su|Xu). (1)

Here, u indicates the index of a training utterance. The term Su and
Xu indicate the reference state sequence and the acoustic features
of training utterance u, respectively. The error signal w.r.t. the final
layer’s output y(u, t) 2 of the AM at the time frame t of utterance u
is calculated as follows.

∂FMMI(θ)

∂y(u, t)
= δSu:y(u,t) − γDEN

θ,y(u,t), (2)

where δSu:y(u,t) is a delta function, which is 1 if the state corre-
sponding to y(u, t) is in Su, and 0 otherwise. The second term

1We noticed that Wong and Gales [17] suggested using the temperature
as the acoustic and language model scaling but did not actually explore it.

2In the conventional DNN-HMM hybrid, y is the activation of the final
softmax layer [14, 20]. On the other hand, LFMMI assumed that the AM
directly outputs the pseudo-likelihood and that y is the output of the final
layer.
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γDEN
θ,y(u,t) represents a posterior probability of being in a state cor-

responding to y(u, t), calculated on the basis of the current model
parameter θ as follows,

γDEN
θ,y(u,t) =

∑
S

δS:y(u,t)Pθ(S|Xu)

=

∑
S δS:y(u,t)Pθ(Xu|S)P (S)∑

S′ Pθ(Xu|S′)P (S′)
. (3)

In earlier studies, the decoded lattices created using CE-trained AMs
were used to constrain the hypothesis space in Eq. (3) [13, 14, 20].
However, this requires redundant CE training of AMs. In addition,
the accuracy of MMI training could be limited because the parame-
ters could fall into the local optimum near the CE-AM.

Recently, Povey et al. [15] proposed LFMMI, which can avoid
the redundant lattice-creation procedure. Instead of lattice-based
error calculation, LFMMI uses forward-backward calculation on
the phone 4-gram space to calculate Eq. (3). Various techniques
(e.g., l2-regularization, CE-regularization, connectionist-temporal-
classification (CTC)-like topology) were introduced to realize MMI
training of AMs without relying on the CE-AM-based lattices. As
an important difference from the conventional DNN-HMM, it is as-
sumed in LFMMI modeling that the AM directly outputs the pseudo
log-likelihood instead of the posterior probability of each state; i.e.,
the softmax activation function is no longer applied at the output
layer. This requires us an additional consideration about TS training,
which we will discuss in Section 3.1.

Although LFMMI achieved a large accuracy gain on the conven-
tional methods, Povey et al. [15] also showed that the sMBR training
on LFMMI AM could further improve the accuracy. In our experi-
ments, we basically train an AM first by LFMMI and then switched
to sMBR training starting from the LFMMI-trained AM.

3. TS TRAINING WITH SEQUENCE-LEVEL
TEMPERATURED KL DIVERGENCE

3.1. Conventional method: l2-norm-based training

TS training is a technique to train a small student model that imi-
tates a large and accurate teacher model. For conventional CE-based
DNN-HMM AMs, most literature realized the TS training by mini-
mizing the frame-level KL divergence between teacher and student
models’ outputs [1]. Hinton et al. proposed using temperatured soft-
max to make the output distribution softer (i.e., more informative),
which is known as “knowledge distillation” [2]. However, these
techniques assumed that the softmax activation function is used at
the output layer. Because the softmax activation function is not used
in LFMMI modeling, the KL-based formalization and the tempera-
tured softmax are both no longer able to be applied.

Another simple way to realize TS training is to minimize the l2-
norm between teacher and student models’ outputs. In this case, the
training criterion (to maximize) is the inverse of squared l2-norm, as
follows.

F l2(θ||θ∗) =
∑
u

∑
t

−1

2
||y(u, t)− r(u, t)||22 (4)

Here, r(u, t) is the output of the teacher model at the time frame t
of utterance u. The error signal w.r.t. the final layer’s output of the
student model is as follows.

∂F l2

∂y(u, t)
= r(u, t)− y(u, t) (5)

Note that the same error is approximately derived when the temper-

atured softmax activation is used with a high temperature [2]. In
our experiment with LFMMI AMs, we evaluated l2-norm based TS
training as the conventional method of the frame-level TS training.

3.2. Proposed method: Sequence-level temperatured Kullback-
Leibler divergence-based training

We define the training criterion to maximize as the inverse of KL
divergence between the sequence-level temperatured posterior on the
basis of teacher model parameter θ∗ and student model parameter θ.

FSeqKL(θ||θ∗;T ) = −
∑
u

∑
S

PT,θ∗(S|Xu) log
PT,θ∗(S|Xu)

PT,θ(S|Xu)

∝
∑
u

∑
S

PT,θ∗(S|Xu) logPT,θ(S|Xu) (6)

Here, PT,θ(S|Xu) represents the temperatured posterior of se-
quence S given X with model parameter θ and temperature param-
eter T as follows.

PT,θ(S|X) =
[Pθ(X|S)P (S)]1/T∑
S′ [Pθ(X|S′)P (S′)]1/T

, (7)

If T = 1, it is equal to the conventional sequence-level posterior.
By applying T larger than 1.0, the posterior becomes close to the
uniform distribution (i.e., softer distribution). 3

Then, the error signal w.r.t. the final layer’s y(u, t) of the student
model can be derived as follows. 4

∂FSeqKL

∂y(u, t)
=

∑
S

PT,θ∗(S|Xu)
∂ logPT,θ(S|Xu)

∂y(u, t)

=
∑
S

PT,θ∗(S|Xu)
1

T
(δS:y(u,t) − γDEN

T,θ,y(u,t))

=
1

T
(γDEN

T,θ∗,y(u,t) − γDEN
T,θ,y(u,t)) (8)

Here, γDEN
T,θ,y(u,t) =

∑
S δS:y(u,t)PT,θ(S|Xu) is a temperatured

posterior probability of being a state corresponding to y(u, t) cal-
culated on the basis of the student parameter θ (i.e., a temperatured
version of (3)). Similarly, γDEN

T,θ∗,y(u,t) =
∑

S δS:y(u,t)PT,θ∗(S|Xu)
is a temperatured posterior probability of being a state correspond-
ing to y(u, t) calculated on the basis of the teacher’s parameter θ∗.
By comparing Eqs. (2) and (8), the differences from the normal su-
pervised training are (i) the use of the posterior γDEN

T,θ∗,y(u,t) instead
of the delta function and (ii) the use of the temperature parameter.
Both γDEN

T,θ,y(u,t) and γDEN
T,θ∗,y(u,t) can be estimated using the forward-

backward calculation over the (temperatured) phone 4-gram space,
the same as the estimation of γDEN

θ,y(u,t).

4. EXPERIMENT

4.1. Experimental settings

Our experiment was conducted on the individual headset micro-
phone (IHM) data of the AMI meeting corpus [21]. We conducted

3The temperature parameter is different from the AM scaling parameter
in that it is applied to both AM and language model (LM) scores whereas the
AM scaling parameter is applied only to the AM score in order to coordinate
the scale of the LM score and the AM score. Note that, different from the
conventional DNN-HMM, the LM score and the AM score are combined
without any scaling in LFMMI training.

4From the first equation to the second equation, almost the same deriva-
tion as Eq. (2) is used by replacing Su with S. From the second to the third,
we used

∑
S PT,θ∗ (S|Xu) = 1.
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our experiments on the basis of the Kaldi toolkit [22]. The training
and evaluation datasets were prepared accordance with the instruc-
tions in Kaldi. The training data totaled 77 h and was augmented
6 times using speed perturbation (x3) [23] and noise/reverberation
perturbation (x2) [24]. The development and evaluation data totaled
8.9 h and 8.7 h, respectively. A 3-gram LM trained by AMI tran-
scription (49K vocabulary) was used for decoding. We tuned all
parameters by using the development data, and the best setting was
used for decoding the evaluation data.

We trained two types of AMs, the architectures of which are
shown in Fig. 1. One is a big and accurate teacher-AM, which
consisted of CNN, TDNN, and LSTM. The other is a much smaller
student-AM, which was a combination of TDNN and LSTM. The
output layer had 4,654 nodes, which corresponded to the clustered
context-dependent phoneme HMM states. As explained in Sec-
tion 2, softmax activation was not used at the output layer. Input
features for the network were 40-dim Mel-frequency cepstral co-
efficients (MFCCs) and 40-dim log-Mel-filterbank (FBANK) both
without normalization. In addition, we extracted a 100-dim iVector
every 100 msec and appended it to the input features for online
speaker/environment normalization [25]. Instead of delaying refer-
ence labels, we advanced the input features by five frames, elimi-
nating the need to consider the output delay in model distillation.
Both models were first trained by LFMMI and then further trained
by sMBR criterion. We applied l2-regularization and cross-entropy-
regularization proposed by Povey et al. [15] with scales of 0.00005
and 0.1, respectively. Batch normalization [26] was applied after
each convolutional layer. 5 In addition, backstitch technique [8]
with the backstitch scale 1.0 and backstitch interval 4 was used in
LFMMI training. Parameter size and the real time factor (RTF) for
decoding (evaluated on Intel(R) Xeon(R) CPU E5-2670) for two
AMs are shown in Table 1.

Table 1. Summary of teacher and student models.
Architecture # of params. RTF

CNN-TDNN-LSTM (teacher) 47.7M 1.30
TDNN-LSTM (student) 10.8M 0.29

4.2. Baseline model results

Word error rates (WERs) of the teacher and student AMs are shown
in Table 2. As shown in the table, additional sMBR training after
LFMMI training consistently gave us the best results. CNN-TDNN-
LSTM achieved much better WERs than TDNN-LSTM. 6 However,
CNN-TDNN-LSTM is so large that it cannot be used for real-time
decoding (as shown in Table 1). Therefore, in the next experiment,
we conducted TS training to make the small TDNN-LSTM mimic
the large CNN-TDNN-LSTM.

Table 2. WERs of teacher and student models.
Model Criterion dev eval

CNN-TDNN-LSTM LFMMI 19.32 18.76
LFMMI → sMBR 18.83 18.05

TDNN-LSTM LFMMI 20.82 20.33
LFMMI → sMBR 20.24 19.72

5Batch normalization in other places slightly degraded the performance
in our preliminary experiment.

6We actually could not find any better AMI-IHM results than those of
CNN-TDNN-LSTM in the previous literature.

Fig. 1. Model architectures of (a) teacher and (b) student models. A
number with an arrow indicates a time splicing index, which forms
a basis of TDNN [27].

4.3. Comparison of TS training with l2-norm and sequence KL

We then evaluated TS training with conventional l2-norm based
method and sequence KL-based method. In this experiment, we
set the temperature parameter T = 1.0. We conducted TS train-
ing starting from sMBR-trained TDNN-LSTM and conducted four
epochs of TS training with various learning rates. Backstitch train-
ing with the backstitch scale 1.0 and backstitch interval 4 was used,
which slightly improved WERs. Neither l2-regularization nor CE-
regularization was applied.

Results are shown in Table 3. In this table, initial learning rates
are presented. The learning rate was exponentially decayed from
the initial value presented in the table to the one-tenth the initial
learning rate at the end of the training. As shown in the table, l2-
norm based TS training improved the WER from 19.72% to 19.01%,
which corresponds to filling only 43% of the WER gap between the
student and teacher AMs. On the other hand, sequence KL-based
TS training achieved a 18.45% WER, filling 76% of the WER gap
between the student and teacher AMs.

4.4. Effect of initialization of student model before TS training

As a supplemental experiment, we compared different initialization
schemes of the student AM before TS training. Table 4 shows the
results of TS training starting from (i) a randomly initialized student
model, (ii) a LFMMI-trained student model, and (iii) a sMBR trained
student model. The sequence KL-based training with T = 1.0 was
conducted with the initial learning rate of 0.005. As shown in the
table, the better the initial model, the better the results after TS train-
ing. In the rest of the experiments, we conducted TS training starting
from the sMBR trained student model.
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Table 3. WER of student AM (TDNN-LSTM) with different TS train-
ing criterion.

Criterion Learning Rate dev eval
LFMMI → sMBR - 20.24 19.72

0.0001 20.14 19.78
0.00005 19.70 19.14

TS (l2-norm) 0.00002 19.65 19.01
0.00001 19.72 19.13
0.000005 20.00 19.46

0.02 19.99 19.37
0.01 19.44 18.72

TS (SeqKL; T = 1.0) 0.005 19.08 18.45
0.002 19.15 18.54
0.001 19.41 18.84

Teacher Model (CNN-TDNN-LSTM) 18.83 18.05

Table 4. Effect of initialization of student model for TS training.
Initial Student Model WER before TS WER after TS

dev eval dev eval
Random - - 19.20 18.79
LFMMI 20.82 20.33 19.14 18.55

LFMMI → sMBR 20.24 19.72 19.08 18.45

4.5. Effect of temperature in sequence KL-based TS training

We then evaluated the effect of the temperature parameter T in the
proposed sequence KL-based TS training. WERs with different tem-
perature values for development and evaluation sets are shown in
Fig. 2. As shown in the figure, a temperature of 1.2-1.4 slightly but
consistently improved WERs. The best result was achieved at the
temperature of 1.2, where we achieved a 18.23% WER for the eval-
uation set. The difference from the teacher model was only 0.18%
of WER (filling 89% of the WER gap between teacher and student
models) although the student model was 4.4 times smaller and can
be decoded 4.5 times faster.

Fig. 2. Effect of temperature in TS training based on the sequence-
KL divergence.

4.6. Effect of student model size

Finally, we evaluated the case where an even smaller student model
was used for TS training. In this experiment, we used the same
teacher model (CNN-TDNN-LSTM) but shrank the student TDNN-
LSTM by reducing the node size. We prepared two types of addi-
tional student TDNN-LSTMs. One had the same architecture as that
in Fig. 1 (b), but all 512-dim ReLU layers were replaced with 256-
dim ReLu layers. This model had 6.4M parameters, and decoding
RTF was 0.17. The other is the same as the first, but the parameters
were further reduced by replacing all 512-dim LSTM layers into

256-dim LSTM with 128-dim projection layers. The latter model
had 3.3M parameters, and decoding RTF was 0.10.

WERs for evaluation data with three student models are shown
in Fig. 3. The left figure plots the results in accordance with the
model size, and the right figure plots the same results in accordance
with the decoding RTF. All training parameters were set to the best
parameters in the previous experiments. As shown in the figure,
the proposed sequence-KL-based TS training consistently achieved
much better WERs than the conventional l2-norm based TS training.

Fig. 3. Effect of student model size in TS training for evaluation
data (left: params., right: RTF). “Student (original)” indicates the
student model before TS training.

One important observation here is that the smaller the student
model, the larger the difference between l2-norm based TS train-
ing and the proposed sequence-KL-based TS training. Especially,
the l2-norm based TS training even degraded the WER from the
original student model when the model was very small. It should
be emphasized that this degradation was not caused by the parame-
ter divergence in network training because we found that the train-
ing criterion F l2 was successfully improved even for the smallest
model. Instead, we interpret that this phenomena occurs because
the incomplete imitation of frame-level output (due to too small ca-
pacity of the model) deteriorated the sequence-level quality as the
sequence-trained AMs. Different from the l2-norm based method,
our proposed method consistently achieved improvements even for
very small AMs.

5. CONCLUSION

In this paper, we proposed using the sequence-level temperatured
Kullback-Leibler divergence as a metric for TS training. In our ex-
periment on the AMI meeting corpus, the proposed method filled
89% of the WER gap between teacher and student AMs, whereas
the frame-level TS training was able to fill only 43% of the WER
gap. We also showed that the smaller the student model, the more
superior the proposed method. The frame-level TS training some-
times even degraded the performance, whereas the proposed method
consistently improved the accuracy.
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