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ABSTRACT

Factorized Hidden Layer (FHL) has been proposed for the adapta-
tion of deep neural network (DNN) and Long Short-Term Mem-
ory (LSTM) based acoustic models (AMs). In FHL, a speaker-
dependent (SD) transformation matrix and an SD bias are included
in addition to the standard affine transformation. The SD transfor-
mation is a linear combination of rank-1 matrices whereas the SD
bias is a linear combination of vectors. However, the adaptation of
LSTMs is challenging and often reports modest gains. In this pa-
per, we propose to use student-teacher training to estimate more ef-
ficient FHL bases for LSTM AMs using an FHL adapted DNN as
the teacher model. For both AMI IHM and AMI SDM tasks, FHL
achieves 3.2% absolute improvement over the frame-level cross en-
tropy trained LSTM baselines. Moreover, FHL results 3.0% and
3.8% absolute improvements over sequentially trained LSTM base-
lines for the AMI IHM and AMI SDM tasks respectively.

Index Terms— Long Short-Term memory (LSTM), Recurrent
Neural Networks (RNNs), Speaker Adaptation, Student-teacher
training, Acoustic Modeling

1. INTRODUCTION

In state-of-the-art automatic speech recognition (ASR) systems, re-
current neural networks (RNNs) have been found to significantly
outperform the feedforward deep neural networks (DNNs) due to
better modeling of temporal dependencies. Both RNNs and DNNs
suffer from performance degradations due to mismatch between
training and testing conditions. To address this problem, adaptation
techniques are developed. These techniques reduce the mismatch
between training and testing conditions by transforming the models
and / or features.

The commonly used maximum a posteriori (MAP) adapta-
tion [1], maximum likelihood linear regression (MLLR) [2, 3] and
speaker adaptive training (SAT) [4, 5] were first developed for con-
ventional Gaussian mixture model (GMM)–hidden Markov model
(HMM) systems. Then, adaptation techniques were developed for
deep neural network (DNN)-HMM hybrid systems with significant
performance improvements [6, 7, 8, 9, 10, 11, 12]. Since RNNs
consistently outperform DNNs, it is important to develop adaptation
methods for RNN acoustic models (AMs). However, unsupervised
adaptation of RNN AMs has been recognized as a difficult problem
with modest gains reported in the literature [13, 14, 15]. This can
be mainly due to the increased complexity of RNNs in comparison
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to DNNs. It has also been suggested that RNNs perform implicit
normalization of the speaker variability due to their effectiveness
at capturing and normalizing long-range characteristics and conse-
quently adaptation has a limited impact [15].

Recently, student-teacher training which is also known as
knowledge distillation has been used to transfer knowledge between
models [16, 17, 18]. Student-teacher training is performed using two
steps. First, teacher models are trained and second, student models
are trained to mimic output distributions of the teacher models. In
[19], student-teacher training is used to build multilingual systems in
low-resource settings. In addition, that work shows student models
can achieve comparable recognition accuracy to teacher networks.
Moreover, student-teacher training is used to avoid overfitting when
the model is adapted with a limited amount of data to different
domains [20]. Furthermore, student-teacher paradigm is success-
fully used for speech enhancement [21]. In [21], a teacher model
is trained with enhanced features while a student model learns to
perform speech enhancement implicitly by mimicking the teacher’s
output distribution.

In this paper, we propose to employ the student-teacher paradigm
to improve the factorized hidden layer (FHL) adaptation of LSTM
AMs. FHL adaptation is first proposed to adapt DNNs and has
shown superior performance over other adaptation methods [22]. In
FHL adaptation, a speaker-dependent (SD) transformation matrix
and an SD bias are estimated in addition to the standard affine trans-
formation. The SD transformation is a linear combination of rank-1
matrices whereas the SD bias is a linear combination of vectors. In
[13], the effectiveness of FHL is investigated for LSTM AMs. Even
though FHL is enjoying significant improvements when used for
DNNs [22], gains are modest for LSTMs [13]. Therefore, we claim
that it is more difficult to estimate effective FHL bases for LSTMs
than DNNs. Based on these findings, we propose to use an FHL
adapted DNN as a teacher when estimating FHL bases for LSTM
AMs. We have evaluated our approach in two benchmark ASR tasks
from the Augmented Multi-party Interaction (AMI) [23]: individual
headset microphone (IHM) and the AMI single distant microphone
(SDM) tasks, respectively. Results are reported for both frame-wise
and sequentially trained systems.

The rest of the paper is organized as follows. Section 2 reviews
the LSTM acoustic models and Section 3 discusses the FHL adap-
tation for LSTMs. Section 4 briefly describes the student-teacher
training and details of its usage in this paper. In Section 5 we give
the details of our experimental setup. The results are reported in
Section 6 and we conclude our work in Section 7.
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2. LSTM-RNNS

To mitigate the vanishing gradient problem in RNN training when
using stochastic gradient descent method LSTM is proposed [24].
LSTM has memory blocks with self-connections which enable it to
model temporal dependencies. The information flow to each LSTM
memory cell is controled by a set of units called gates. There are
three types of gates called input, output and forget. As the names
suggest, the input gate controls the inflow to the memory while an
output gate controls the outflow. Forget gates decide how much in-
formation to forget during each time step [25]. In some architectures,
peephole connections are used to connect gates and cell state infor-
mation [26]. For ASR, it is more effective to use LSTMP models
where a projection layer is used to reduce the network complexity
[27]. In this paper, we perform adaptation experiments on LSTMP
AMs. A summary of LSTMP formulas are given below:

it = σ(Wxixt + Wrirt−1 + Wcict−1 + bi) (1)
ft = σ(Wxfxt + Wrfrt−1 + Wcfct−1 + bf ) (2)
ot = σ(Wxoxt + Wrort−1 + Wcoct−1 + bo) (3)
ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Wrcrt−1 + bc) (4)

mt = ot ◦ tanh(ct) (5)
rt = Wmrmt (6)

where t is the timestep, σ is the sigmoid funtion, it, ft,ot, ct,mt, rt
are vectors with input gate, forget gate, output gate, cell state, cell
output, and projection values respectively. W∗∗ are weight matrices
and b∗ are biases. All peephole weight matrices Wc∗ are diagonal.

3. FHL ADAPTATION

In this section, we first review the FHL adaptation for DNNs. Then,
FHL adaptation for LSTMP AMs is presented.

3.1. FHL Adaptation for DNNs

FHL adaptation can be used to estimate an SD weight matrix Ws

and an SD bias bs as given below:

Ws = W +

|ds|∑
i=1

ds(i)B(i) (7)

where {B(1),B(2), ..,B(|ds|) is the set of basis matrices for the
SD transformation and ds is the SD interpolation vector. Similarly,
the SD bias vector, bs is given by:

bs = b +

|vs|∑
i=1

vs(i)u(k) = b + Uvs (8)

where vs is the SD interpolation vector.
Furthermore, in [22] B(i) weight bases are constrained to be

rank-1 matrices. This allows us to formulate the SD transformation:

Ws = W +

|ds|∑
i=1

ds(i)γ(i)ψ>(i)

= W + ΓDsΨ> (9)

where B(i) = γ(i)ψ>(i) and Ds is a diagonal matrix (Ds =
diag(ds)) and γ(i), ψ(i) are the i-th column vectors for Γ, Ψ re-
spectively.

3.2. FHL Adaptation for LSTM-RNNs

FHL adaptation for LSTMP can be applied by modelling SD trans-
formations and SD biases for various W∗∗ and b∗ in the LSTMPs
(Equations (1) - (6)). For instance, we can estimate the SD transfor-
mations on the input feature (xt) as given below:

Ws
x∗ = Wx∗ + Γx∗D

s
x∗Ψ

l>
x∗ (10)

where Ds
x∗ ∈ R|d

s|×|ds| is a diagonal matrix (Ds
x∗ = diag(ds)).

Similarly, an SD transformation is estimated for the recurrence
connections as given below:

Ws
r∗ = Wr∗ + Γr∗D

s
r∗Ψ

l>
r∗ . (11)

However, as found in [13], it is sufficient to estimate SD transforma-
tions on input features. Therefore, in this work we only estimates
SD transformations on input features. Furthermore, we do not esti-
mate any SD transformations for diagonal peephole weight matrices
(Wc∗). Similar to the FHL adaptation for DNNs, the SD bias vector,
bs
∗ can be estimated for LSTMPs (Equation 8).

For both DNN and LSTMP-RNN adaptation, SD interpolation
vectors are initialized with speaker-level i-vectors. During the sec-
ond pass adaptation, these SD interpolation vectors are updated
while keeping all other parameters fixed.

4. STUDENT-TEACHER TRAINING

Student-teacher training was first used to investigate the depth in
deep neural networks [16]. Then, this method was used to compress
a large DNN to a smaller DNN which can be deployed in devices
with limited computational and storage resources [17]. Later, Hinton
et al. [18] coined the term “knowledge distillation” and provided
further evidence of the effectiveness of the student-teacher training
algorithm.

In general, frame-level cross entropy (CE) criterion is used for
DNN training :

FCE = −
∑
t

C∑
i=1

P ref (i|xt) log(Pmodel(i|xt)) (12)

where C is the total number of context dependent (CD) HMM states
and P ref (i|xt) is the probability of feature frame xt belonging to
class i in the reference distribution while Pmodel(i|xt) is the proba-
bility of feature frame xt belonging to class i according to the model
being trained.

In standard training, the reference distribution is obtained from
the forced alignment of the training data. In that case, P ref (i|xt)
becomes a one-hot vector which is also known as training with hard
labels. The simplified formulation is given below:

FCE−Hard = −
∑
t

log(Pmodel(i = c|xt)) (13)

where c is the correct label.
In student-teacher training, instead of using the hard labels, a

student model is trained to mimic the distribution of the teacher net-
work as given below:

FCE−Soft = −
∑
t

C∑
i=1

P teacher(i|xt) log(P student(i|xt)).

(14)

5955



In general [20, 21], the student network is trained to minimize
the following loss function which is an interpolation between the soft
and hard CE losses:

F = (1− α)FCE−Hard + αFCE−Soft (15)

where α is the interpolation weight.
In this work, we incoporate student-teacher training to estimate

FHL bases for LSTMP AMs. We start with a well-trained LSTMP
AM and then an FHL-adapted DNN model is used as the teacher
to estimate the FHL bases for the LSTMP AM. We keep all other
weights fixed when estimating the FHL bases. Therefore, student-
teacher training is only used to estimate the FHL bases. Furthermore,
we do not interpolate teacher labels with the original hard targets.
Therefore, we use

P teacher = PFHL−DNN and P student = PFHL−LSTMP

during the FHL bases estimation in Equation 14.

5. EXPERIMENT SETUP

We use the AMI corpus which contains about 100 hours of meetings
conducted in English. In the experiments, we use the IHM data and
the speech from the first microphone in the array which is known as
the SDM. We use the ASR split [28] of the corpus where 78 hours
of the data are used for training while about 9 hours each are used
for evaluation and development. We use 90% of the training set for
training, and the rest is used as the validation set. The results are
reported on the evaluation set.

For both the IHM and SDM datasets, we extract Mel-frequency
cepstral coefficients (MFCCs) from the speech using a 25 ms win-
dow and a 10 ms frame shift. Then linear discriminant analysis
(LDA) features are obtained by first splicing 7 frames of 13-
dimensional MFCCs and then projecting down to 40 dimensions
using LDA. A single semi-tied covariance (STC) transformation
[29] is applied on top of the LDA features. We further extract
speaker-normalized CMLLR (also known as fMLLR) features af-
ter applying speaker specific CMLLR transforms on top of these
LDA+STC features. The GMM-HMM system for generating the
alignments for DNNs and LSTMPs is trained on these 40 dimen-
sional CMLLR features. We train the DNN-HMM baselines on the
CMLLR features that span a context of 11 neighboring frames. Be-
fore being presented to the DNN, features are globally normalized
to have zero mean and unit variance. DNNs have 6 sigmoid hidden
layers with 2048 units per layer, and around 4000 outputs.

We train RNNs consist of 3 unidirectional LSTMP layers with
1024 memory cells and 512 dimensional projection as in [30]. The
input feature is a single frame with a 5 frames shift. For the train-
ing, we use truncated back propagation through time (BPTT) with
sequences of 20 frames. We process 40 sequences in parallel.

We conduct experiments on models trained to optimize the
cross-entropy criterion as well as the state-level minimum Bayes
risk (sMBR) criterion. All the DNNs and LSTMPs are trained using
CNTK [31]. Kaldi [32] is used to build GMM-HMM systems and
for i-vector extraction. The UBM consists of 128 full Gaussians.
For decoding, we use the trigram language model as used in Kaldi,
which is an interpolation of trigram language models trained on AMI
and Fisher English transcripts. We do not use any data cleaning or
frame-level dropout as used in Kaldi.

Table 1. Word error rates (WER %) for baseline models trained on
CMLLR features.

Model IHM SDM
DNN 25.9 52.7

+ sMBR 24.3 50.0
LSTMP 25.3 49.6

+ sMBR 24.6 48.4

Table 2. IHM : WER % for various models when FHL adaptation is
applied to different layers of the LSTMP model trained on CMLLR
features.

Layer First Pass Second Pass
None (SD bias) 25.0 24.4

1 25.0 24.2
2 24.7 24.1
3 24.9 24.4

6. RESULTS

Table 1 shows the results for baseline DNNs and baseline LSTMP
models trained on the IHM and SDM tasks. For both tasks, LSTMP
models trained using the cross entropy criterion outperform the
corresponding DNNs. However, the LSTMP model trained using
the sMBR criterion performs slightly worse than the corresponding
DNN for the IHM task. It is evident that DNNs benefit more from
the sMBR criterion than LSTMP models. Furthermore, all LSTMP
models trained on the SDM task perform significantly better than
the corresponding DNNs. This can be because the superior temporal
dependency modelling of LSTMPs is more beneficial for the noisy
distant microphone speech in the SDM task.

In Table 2, we present the results when FHL adaptation is ap-
plied to different layers of the LSTMP model. First row results are
for the case where only an SD bias is connected to the first hidden
layer. As can be seen, the effectiveness of SD transformations in
FHL adaptation is not evident from the results. However, in [13],
FHL adaptation reported more gains when models are trained on
LDA+STC features. Therefore, gains of the FHL adaptation dimin-
ish when AMs are trained on speaker normalized CMLLR features.

Table 3 presents results when FHL adaptation is applied to
DNNs trained on both cross entropy and sMBR criterions. As can
be clearly seen, FHL reports significant improvements. More specif-
ically, gains we observe from the second pass over the first pass are
significantly higher for DNNs than the that of LSTMPs shown in
Table 2. This observation suggests that the estimated FHL bases for
DNNs are more effective than the LSTMP FHL bases. Therefore,
we employ student-teacher approach to estimate the FHL bases for
LSTMP models by using FHL adapted DNNs as teachers.

Table 3. IHM : WER % for FHL adapted DNN models.
Model First Pass Second Pass
DNN 25.9 -

+ sMBR 24.3 -
+ FHL 25.2 23.8

+ sMBR 23.4 22.1

Table 4 presents the results for FHL adaptation of LSTMPs
where FHL bases are estimated using student-teacher training. For
all experiments, the FHL adapted sMBR DNN (WER of 23.4% in
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Table 4. IHM : WER % for LSTMP FHL adaptation where an FHL
adapted DNN is used as the teacher.

Model First Pass Second Pass
Baseline 25.3 -

SD bias only 27.9 25.8
Layer 1 (with SD bias) 25.8 24.0
Layer 2 (with SD bias) 24.1 23.0
Layer 3 (with SD bias) 23.5 22.6

Layer 3 (without SD bias) 23.3 22.8
All Layers (without SD bias) 23.3 22.1

Table 5. IHM : Summary of results for LSTMP adaptation with
student-teacher training.

Model First Pass Second Pass
LSTMP 25.3 -

+ sMBR 24.6 -
+ FHL (ST) 23.3 22.1

+ sMBR 22.5 21.6

Table 3) is used as the teacher. It is worth highlighting the consid-
erable degradation in performance of the model where an SD bias
is connected to the first hidden layer. However, when SD transfor-
mations are estimated performance improves significantly. We get
the best performance among the first passes when only SD transfor-
mations are estimated for layer 3 of the LSTMP model. However,
the model with the SD biases connected to the first layer along
with the SD transformations in the third layer (22.6%) outperforms
the corresponding model without SD biases after the second pass
(22.8%). This observation suggests that performing adaptation at
multiple layers improves the second pass adaptation performance.
Therefore, we train a model with SD transformation connected to all
LSTMP layers. As expected this model enjoys the best performance
of 22.1% which is a 3.2% absolute improvement over the LSTMP
baseline.

Table 5 summarizes the adaptation results of LSTMP models
trained on the IHM task. As can be clearly seen, FHL enjoys 3.2%
and 3.0% absolute performance improvements over both cross en-
tropy and sMBR trained LSTMP baselines respectively. Accord-
ing to the best of our knowledge, WER of 21.6% is the best result
available for unidirectional LSTMP models. We use student-teacher
training only when estimating the FHL bases for the LSTMP AM
with cross entropy criterion.

Next, we report the results of adaptation experiments on the
SDM task in Table 6. For both DNNs and LSTMPs, FHL improves
the performance significantly. As expected, sMBR training delivers
more gains over DNNs which is also in congruence with the IHM
results. We obtain 2.3% and 4.1% absolute gains over the baseline
DNN systems for the cross entropy and sMBR criterions, respec-
tively. Furthermore, the FHL adapted LSTMP systems achieve 3.2%
and 3.8% absolute improvements over the baselines trained using
cross entropy and sMBR criterions, respectively.

Finally, in Table 7, we investigate the effectiveness of FHL adap-
tation when SDM models are trained using IHM alignments. As can
be clearly seen, FHL enjoys significant improvements over DNNs
as well as LSTMPs. It is worth highlighting that the performance
gains from using IHM alignments are significantly better for DNNs
than the that of LSTMPs. This is understandable as LSTMPs are
more robust to errors in alignments due to their superior temporal

Table 6. SDM : WER % for various adaptation experiments with
student-teacher training.

Model First Pass Second Pass
DNN 52.7 -

+ sMBR 50.0 -
+ FHL 51.7 50.4

+ sMBR 48.5 45.9
LSTMP 49.6 -

+ sMBR 48.4 -
+ FHL (ST) 47.9 46.4

+ sMBR 45.7 44.6

Table 7. SDM : WER % for various models trained with IHM align-
ments.

Model First Pass Second Pass
DNN 47.6 -

+ sMBR 44.9 -
+ FHL 47.2 46.4

+ sMBR 44.6 43.1
LSTMP 46.8 -

+ sMBR 46.6 -
+ FHL (ST) 44.8 43.8

+ sMBR 44.2 42.3

modeling capacity and consequently have report smaller gains when
IHM alignments are used. Therefore, the FHL adaptation gains over
DNNs trained with IHM alignments are smaller compared to that of
LSTMPs. In summary, FHL obtains 3.0% and 4.3% absolute im-
provements over the LSTMP baselines trained using cross entropy
and sMBR criterions, respectively.

7. CONCLUSIONS

Factorized Hidden Layer (FHL) was proposed for the adaptation of
deep neural network (DNN) and then later extended to Long Short-
Term Memory (LSTM) acoustic models (AMs). In FHL, a speaker-
dependent (SD) transformation matrix and an SD bias are included
in addition to the standard affine transformation. The SD transforma-
tion is a linear combination of rank-1 matrices whereas the SD bias
is a linear combination of vectors. Even though FHL reported signif-
icant performance improvements for DNN adaptation, when applied
for the LSTMPs, the gains were small. Therefore, this paper pro-
posed to employ student-teacher training paradigm to estimate more
efficient FHL bases for LSTMP AMs using an already FHL adapted
DNN as the teacher model. Evaluations are performed on AMI IHM
and AMI SDM tasks. FHL achieved 3.2% absolute improvement
over the frame-level cross entropy trained LSTMP baselines in both
IHM and SDM tasks. Moreover, FHL also reported significant im-
provements over sequentially trained LSTMP baselines with 3.0%
and 3.8% absolute improvements for the IHM and SDM tasks re-
spectively. Furthermore, when IHM alignments are used in training
SDM models, FHL obtained 3.0% and 4.3% absolute improvements
over the LSTMP baselines trained using cross entropy and sMBR
criterions, respectively. As a future work, we plan to extend this
approach to bidirectional LSTMP AMs.
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