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ABSTRACT

Deep neural network (DNN) has achieved the state-of-the-art
performance in automatic speech recognition (ASR). How-
ever, the meaning of parameters and neurons are hard to be
interpreted in DNNs, which makes the regularizations and
adaptation of DNNs difficult. In this work, we aim to do ef-
fective and efficient adaptation on a more interpretable model,
deep mixture generative network (DMGN). Adapted means
are first proposed to perform adaptation for DMGN. The
speaker-dependent means are estimated in an unsupervised
adaptation mode. Moreover, discriminative linear regression
(DLR) is proposed to estimate more robust speaker-dependent
means when lack of adaptation data. We evaluate our pro-
posed methods on 50-hour subset of Switchboard. Experi-
ments reveal that all proposed methods are better than speaker
independent baseline, and a slight performance improvement
is obtained compared with LHUC. In addition, we project the
Gaussian mean of one senone and all inputs aligned to this
senone to a 2D graph. The illustration shows that after ap-
plying DLR, the mean is indeed transferred from an average
point to the speaker specific center, which demonstrates the
better explanation of DMGN again.

Index Terms— Deep mixture generative network, Speaker
Adaptation, Discriminative linear regression, Acoustic Mod-
eling

1. INTRODUCTION

In recent years, the performances of the state-of-the-art
speech recognition systems have been significantly improved
due to the great progress in deep learning [1, 2, 3, 4, 5].
Although DNNs have performed well in several domains,
interpreting the parameters of DNN is still difficult, which
makes the adaptation of DNN to acoustic conditions hard.
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Traditional adaptation methods for DNN mainly focus
on introducing additional features or parameters to model the
acoustic conditions. Speaker-dependent (SD) features such as
i-vector [6, 7, 8] and speaker code [9] provide speaker infor-
mation to the networks during training and testing. Some
other techniques concentrate on feature-normalization at
some DNN layers. For instance, linear input network (LIN)
[10, 11, 12] and linear output network (LON) [10, 13] apply
a linear transformation to input features and the output layer.
The learning hidden unit contributions (LHUC) [14, 15] and
the parametric activation [16] scale the activation of hidden
layers to transform the features into SD space. In CAT-DNN
[17, 18, 19, 20], a speaker-specific weight matrix is estimated
by combining the weight matrix base with SD interpolation
weights. However, due to lack of understanding the meaning
of neurones and parameters in DNN, previous methods would
not be the most efficient way to do adaptation.

Recently, several works have been proposed to better un-
derstand DNN. In [21, 22], stimulated learning is proposed
to force the neurones of different regions belong to different
phonemes, making the neurones interpretable. Furthermore,
structured neural networks have also been investigated. The
DNN topology is explicitly modified to make some parame-
ters in NN to model specific functions such as the deep mix-
ture generative network (DMGN) [23, 24, 25, 26]. In this
structure, the likelihood is estimated by using a GMM at the
output layer of DNN. Although the behavior of the activation
of DNNs is hard to understand, the parameters of GMM have
clear meanings and representations, which should be helpful
for doing adaptation.

This work aims to do fast and efficient adaptation on
the deep mixture generative network. Assume that only one
Gaussian is used for a senone, the mean of the Gaussian
represents the clustering center of all sample aligned to this
senone. However, this mean is estimated over all speakers,
samples from different speaker should form different clus-
tering centers. Therefore, adapted means are first proposed
to do adaptation for DMGN. The SD means are estimated in
an unsupervised adaptation mode. Moreover, discriminative
linear regression (DLR) is proposed to estimate more robust
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SD means when lack of adaptation data. To better interpret
these parameters, visualization of the mean and input features
in 2-D pictures are also provided, which reveals that after ap-
plying DLR, the mean is indeed transferred from an average
point to the speaker-specific center. The proposed adaptation
techniques are evaluated on 50-hour subset of Switchboard
speech recognition task (SWBD). The experiments show that
proposed adaptation methods are better than speaker inde-
pendent baseline, and a slight performance improvement is
obtained compared to LHUC.

The rest of the paper is organized as follows. Section 2
briefly introduces the basic concept and training of deep mix-
ture generative network. The adaptation techniques for deep
mixture generative network are included in section 3. Exper-
iment details and results on SWBD are included in Section 4.
And finally we give our conclusion in section 5.

2. DEEP MIXTURE GENERATIVE NETWORK FOR
AUTOMATIC SPEECH RECOGNITION

In order to better model the senone, Gaussian mixture model
is introduced into a DNN at the output layer, which is re-
ferred to as deep mixture generative network (DMGN) in
[26]. Rather than using softmax layer to predict the posterior
probability p(y|x), the likelihood p(x|y) is estimated at the
output layer. Each senone y is modeled by a GMM. The
formulation is defined as following:

p(x|y) =

g∑
i=1

wy,iN (x;µy,i,Σy,i), (1)

where x is the input features, y is the senone, µy,i and Σy,i are
the mean vector and covariance matrix of the i-th Gaussian of
the senone y and wy,i is the mixing weight of each Gaussian.

The topology of the deep mixture generative network is
illustrated in Figure 1. Acoustic features first pass through
several non-linear transformations. Then a linear bottle-neck
layer is used to reduce the dimensionality of input features
and remove the correlation between features to make the di-
agonal covariance matrix assumption hold. So all covariance
matrices used in this work are diagonal matrices. At last, the
low-dimension uncorrelated vector is input to the GMM layer
to get the log-likelihood log p(x|y).

Cross-entropy (CE) Lce between the ground truth label
and the senone posterior is optimized to training the network.
The following equations are given to calculate the posterior:

p(y|x) =
p(x|y)p(y)

p(x)
(2)

=
exp(log p(x|y) + log p(y))∑
y exp(log p(x|y) + log p(y))

(3)

= softmax(log p(x|y) + log p(y)) (4)

where p(y) = Ty/T is the prior probability which is esti-
mated from training set. The key partial derivatives are the

gmm layer

linear
bottle-neck layer

hidden layer

input features

...

...

...

Fig. 1. Deep mixture generative network

gradients of the likelihood with respect to the mean, variance
and mixing weights.

∂Lce

∂µy,i,j
=

∂Lce

∂ log p(x|y)
{πi(x, y)

xj − µy,i,j

σ2
y,i,j

} (5)

∂Lce

∂σy,i,j
=

∂Lce

∂ log p(x|y)
πi(x, y){(xj − µy,i,j

σ2
y,i,j

)2 − 1}(6)

∂Lce

∂wy,i
=

∂Lce

∂ log p(x|y)
{πi(x, y)− wy,i} (7)

where

πi(x, y) =
wy,iN (x;µy,i,Σy,i)∑g
l=1 wy,lN (x;µy,l,Σy,l)

(8)

and the ∂Lce
∂ log p(x|y) is the partial derivative with respect to

log p(x|y), which is the error propagating back to the GMM.
The index i is the number of GMM components and index j
is related to the dimension, so i = 1, ..., g and j = 1, ..., d.
With the update equations above, the deep mixture generative
network can be trained accordingly.

3. FAST ADAPTATION ON DEEP MIXTURE
GENERATIVE NETWORK AM

In this section, several adaptation techniques are investigated
for deep mixture generative network. We begin with the learn-
ing hidden unit contributions (LHUC) which is well known
for DNN. Then we propose adapted means and discriminative
linear regression for adapting DMGN. Since the mean of each
Gaussian is the cluster center of a given state, it is expectable
that adapting the mean should be more efficient.
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3.1. LHUC

LHUC [14] is a typical approach to adapt DNN, in which
a speaker-dependent (SD) transformation is applied after the
activations of the hidden layer for each speaker s by

hl
s = a(rls) · φ(Wlhl−1

s + bl) (9)

where hl
s is the adapted hidden output of layer l, rls is a

speaker specific vector for the l-th hidden layer and · is an
element-wise multiplication. This method can be applied to
DMGN directly since the first several layers of DMGN are
normal operation like DNNs.

3.2. Adapted Means

Although LHUC is a good way to do adaptation for DNNs,
it is not the most appropriate for the DMGN because LHUC
do not consider the meanings of neurones. There is no prior
knowledge of the activation of each layers. Based on this
consideration, adapted means are proposed. An unsupervised
adaptation mode is used, hypotheses are first generated us-
ing the speaker-independent deep mixture generative network
(SI-DMGN) system to get state level alignments. Then the
mean of each Gaussian will be adapted to a speaker-specific
mean. The adaptation criterion is to minimize the cross en-
tropy between the state posterior and the label generated by
hypothesis. After that, different speakers will have different
means. Thus, the mean of each Gaussian will move much
closer to the true clustering center of a given speaker rather
than an average of all speakers.

3.3. Discriminative Linear Regression

However, due to the lack of adaptation data, it is impossible to
estimate the correct adapted means for all senones. Discrimi-
native linear regression (DLR) is proposed to do more robust
adaption for DMGN.

DLR is intended for transformations of means of Gaussian
mixtures learned from limited adaptation data. At the output
layer of DMGN, the means of each Gaussian is transformed
directly by

µs
y,i = Wsµy,i ∀y, i (10)

where Ws is the transformation matrix of speaker s to trans-
form the mean µy,i for all different senones to a speaker spe-
cific mean µs

y,i. Different speakers use different Ws. After
transformation, the GMM in DMGN outputs the likelihood
using the new transformed parameters:

log p(x|y, s) =

g∑
i=1

wy,iN (x;µs
y,i,Σy,i) (11)

=

g∑
i=1

wy,iN (x; Wsµy,i,Σy,i) (12)

The transformation matrix is also optimized by unsuper-
vised adaptation mode. Only transformation matrix W is up-
dated during adaptation and all other parameters are frozen.
The training criterion is CE and the update can use the com-
mon parameter training scheme such as stochastic gradient
descent (SGD). Since a bottle-neck layer is used before the
GMM output layer, e.g. 50-dim bottle-neck, the size of the
transformation matrix is quite small to make the adaptation
efficient and effective.

4. EXPERIMENTS AND RESULTS

4.1. Dataset description

A 50 hour subset of the Switchboard dataset is used for eval-
uation in this paper. There are 810 speakers including in the
training set. We used two test sets including: the Fisher and
the Switchboard part of the Rich Transcription 2003 evalua-
tion, which is referred to as fsh and swbd in rest experiments.
Test sets include 144 speakers and 8422 utterances.

4.2. Experimental set-up

The deep mixture generative networks and all proposed adap-
tation methods were implemented using CNTK [27] and a
GMM-HMM model containing 2723 tied tri-phone states
was first trained to generate the alignments for DNN training.
Kaldi [28] was used to train GMM-HMM and decode.

36-dimensional log mel-frequency filter bank (FBANK)
along with their first and second order derivatives were ex-
tracted as features and CMN for each speaker is applied. 11
consecutive frames (one frame with its left and right 5 frames)
were used as input and the label of each frame is the forced
alignment generated by GMM-HMM system. Sigmoid was
chosen as the activation function and CE was used as the
training criterion. SGD was used to train models, with an ini-
tial learning rate of 1.0. The learning rate would be reduced
by half if the CE of cross validate set (CV) does not decrease
after an epoch and the batch size is 256. A trigram language
model trained on the Switchboard transcripts was used for de-
coding. The adaptation schemes are evaluated in an unsuper-
vised fashion: a speaker-independent system is used to gener-
ated the hypotheses and the state level alignment, then these
alignments would be used to estimate the SD parameters such
as mean or transformation matrix for each speaker.

4.3. Baseline

The baseline DNN contained 5 hidden layers with 2048 nodes
at each layer and a linear bottle-neck layer with 50 nodes be-
fore the softmax layer. The performance of the baseline DNN
is shown at the first line in Table 1. Then the baseline DNN
with the bottle-neck layer was used to initialize the DMGN
system. The output softmax layer was removed and replaced
by a GMM layer. The Σ was frozen as an identity matrix
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in our experiment for simplicity. So the parameters in GMM
layer are the means µy,i and the mixing weights wy,i Using
a DNN as an initialization is of great importance because the
network could not train well when initialized randomly from
scratch in our experience. After the initialization, parameters
in the GMM layer were updated for one epoch. The perfor-
mance of DMGN with different number of Gaussian compo-
nents including 1, 2 and 4 are compared in the Table 1. The
single Gaussian performs the best compared to that with 2
and 4 Gaussian mixture components. With a single Gaussian
component, the DMGN performs slightly better than common
DNN with bottle-neck layer, while DMGN does not perform
better with the number of Gaussian mixture components in-
creases. It can result from the strong assumption we make that
the covariance is always an identity. In all rest experiments,
only single Gaussian is used.

Table 1. WER (%) comparison of the DNN baseline and
DMGN with different numbers of Gaussian.

Models swbd fsh
DNN 37.9 27.4

1-gmm DMGN 37.6 27.4
2-gmm DMGN 37.9 27.5
4-gmm DMGN 37.9 27.6

4.4. Adaptation performance evaluation

The performance of all proposed adaptation methods for
DMGN are shown in Table 2 including LHUC, adapted means
and DLR. LHUC was applied to the first layer of the DMGN
since in [14] the first layer gained almost performance im-
provement. The result reveals that LHUC doesn’t work well
for DMGN. Results of adapted means are illustrated in the
third line of Table 2. This method yielded better performance
on both swbd and fsh compared to the SI-DMGN systems.
Significant performance improvement was obtained by using
DLR compare to the SI system, which demonstrates that us-
ing transformation can indeed capture the characteristics of
a specific speaker to get a more robust adapted mean. And
since only the means of Gaussian are adapted, the adapta-
tion process is fast. The numbers of parameters are 2048 for
LHUC and 50×50 for DLR.

Table 2. WER (%) Comparison of different adaptation meth-
ods on the DMGN and the relative WER gains.

type swbd fsh
SI-DMGN 37.6 27.4

LHUC 37.6 (0%) 27.0 (1.46%)
Adapted means 37.4 (0.53%) 27.3 (0.36%)

DLR 37.1 (1.33%) 27.0 (1.46%)

Figure 2 illustrates how DLR works for speaker adap-
tation in DGMN. All hidden outputs of the BN layer that

speaker 1

speaker 2

speaker 3

gloabal mean

adapted means

Fig. 2. Global and adapted means visualization of the GMM-
layer in DMGN. This is the example of state 467 (phone n).
The inputs of GMM in DMGN come from different 3 speak-
ers and are drawn with green, yellow and red respectively.
The blue star is the original global mean and the green, yel-
low and red star are the adapted means of each speaker.

align to a random chosen senone (from phone n) among three
speakers were projected to a 2D plane using t-SNE [29]. As
shown in the Figure 2, dots with different color represent out-
puts from different speakers. It is observed that the hidden
outputs from different speaker do have their own clustering
center. The mean of the Gaussian in our SI DMGN (which is
referred to as global mean) and the means after DLR (which
are referred to as adapted means) are also drawn in the same
graph. And the blue star is the original global mean from
GMM in our baseline DMGN. The other three stars represent
the adapted means. It is observed that the global mean is at
the center of all samples, however for a specific speaker, the
distance between the global mean and the real center is quite
far. After DLR training, the mean is indeed transferred from
the average point to the speaker specific center, which demon-
strates the better explanation of DMGN.

5. CONCLUSION

This paper proposes adaptation methods on a structured and
interpretable network, the deep mixture generative network.
Adapted means are first proposed to perform adaptation for
DMGN, which is more effective compared with the typical
adaptation method such as LHUC for DNN. Moreover, dis-
criminative linear regression (DLR) is proposed to estimate
more robust speaker-dependent means when lack of adapta-
tion data. Experiments reveal that all proposed methods are
better than speaker independent baseline, and a significant
performance improvement is obtained after using DLR for
speaker adaptation. Visualizations for the global mean and
adapted means show that the proposed methods actually help
the mean of a Gaussian move from an average point to the
speaker-specific center.
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