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ABSTRACT

We describe the latest version of Microsoft’s conversational speech
recognition system for the Switchboard and CallHome domains. The
system adds a CNN-BLSTM acoustic model to the set of model ar-
chitectures we combined previously, and includes character-based
and dialog session aware LSTM language models in rescoring. For
system combination we adopt a two-stage approach, whereby acous-
tic model posteriors are first combined at the senone/frame level,
followed by a word-level voting via confusion networks. We also
added another language model rescoring step following the confu-
sion network combination. The resulting system yields a 5.1% word
error rate on the NIST 2000 Switchboard test set, and 9.8% on the
CallHome subset.

Index Terms— Conversational speech recognition, CNN,
LACE, BLSTM, LSTM-LM, system combination, human parity.

1. INTRODUCTION

We have witnessed steady progress in the improvement of automatic
speech recognition (ASR) systems for conversational speech, a genre
that was once considered among the hardest in the speech recogni-
tion community due to its unconstrained nature and intrinsic vari-
ability [1]. The combination of deep networks and efficient training
methods with older neural modeling concepts [2, 3, 4, 5, 6, 7, 8]
have produced steady advances in both acoustic modeling [9, 10,
11, 12, 13, 14, 15] and language modeling [16, 17, 18]. These sys-
tems typically use deep convolutional neural network (CNN) archi-
tectures in acoustic modeling, and multi-layered recurrent networks
with gated memory (long-short-term memory, LSTM [8]) models for
both acoustic and language modeling, driving the word error rate on
the benchmark Switchboard corpus [19] down from its mid-2000s
plateau of around 15% to well below 10%. We can attribute this
progress to the neural models’ ability to learn regularities over a
wide acoustic context in both time and frequency dimensions, and,
in the case of language models, to condition on unlimited histories
and learn representations of functional word similarity [20, 21].

Given these developments, we previously carried out an exper-
iment to measure the accuracy of a state-of-the-art conversational
speech recognition system against that of professional transcribers.
We were trying to answer the question whether machines had effec-
tively caught up with humans in this, originally very challenging,
speech recognition task. To measure human error on this task, we
submitted the Switchboard evaluation data to our standard conver-
sational speech transcription vendor pipeline (who was left blind to
the experiment), postprocessed the output to remove text normal-
ization discrepancies, and then applied the NIST scoring protocol.
The resulting human word error was 5.9%, not statistically differ-
ent from the 5.8% error rate achieved by our ASR system [22]. In
a follow-up study [23], we found that qualitatively, too, the human
and machine transcriptions were remarkably similar: the same short

function words account for most of the errors, the same speakers
tend to be easy or hard to transcribe, and it is difficult for human
subjects to tell whether an errorful transcript was produced by a hu-
man or ASR. Meanwhile, another research group carried out their
own measurement of human transcription error [24], while multiple
groups reported further improvements in ASR performance [24, 25].
The IBM/Appen human transcription study employed a more in-
volved transcription process with more listening passes, a pool of
transcribers, and access to the conversational context of each utter-
ance, yielding a human error rate of 5.1%. Together with a prior
study by LDC [26], we can conclude that human performance, un-
surprisingly, falls within a range depending on the level of effort
expended.

In this paper we describe a new iteration in the development of
our system. Improvements to the acoustic model, the language mod-
eling, rescoring and system combination process combine to yield
error rates below the human levels previously measured by us. The
remainder of the paper details the components of the system and
reports results that elucidate their contributions to the overall perfor-
mance.

2. ACOUSTIC MODELS

2.1. Convolutional neural nets

We used two types of CNN model architectures: ResNet and LACE.
The residual-network (ResNet) architecture [27] is a standard CNN
with added highway connections [28], i.e., a linear transform of each
layer’s input to the layer’s output [28, 29]. We apply batch normal-
ization [30] before computing rectified linear unit (ReLU) activa-
tions.

The LACE (layer-wise context expansion with attention) model
is another CNN architecture first described in [31]. It shares many
of the features of time-delay neural networks (TDNNs) [4] but adds
attention masking and ResNet-like linear pass-through connections.

2.2. Bidirectional LSTM

For our LSTM-based acoustic models we use a bidirectional archi-
tecture (BLSTM) [32] without frame-skipping [11]. The core model
structure is the LSTM defined in [10]. We found that using net-
works with more than six layers did not improve the word error rate
on the development set, and chose 512 hidden units, per direction,
per layer; this gave a reasonable trade-off between training time and
final model accuracy.

BLSTM performance was significantly enhanced using a spa-
tial smoothing technique, first described in [22]. Briefly, a two-
dimensional topology is imposed on each layer, and activation pat-
terns in which neighboring units are correlated are rewarded.
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2.3. CNN-BLSTM

A new addition to our system this year is a CNN-BLSTM model
inspired by [33]. Unlike the original BLSTM model, we included
the context of each time point as an input feature in the model. The
context windows was [−3, 3], so the input feature has size 40x7xt,
with zero-padding in the frequency dimension, but not in the time
dimension. We first apply three convolutional layers on the features
at time t, and then apply six BLSTM layers to the resulting time
sequence, similar to structure of our pure BLSTM model.

2.4. Senone set diversity

One standard element of state-of-the-art ASR systems is the com-
bination of multiple acoustic models. Assuming these models are
diverse, i.e., make errors that are not perfectly correlated, an averag-
ing or voting combination of these models should reduce error. In the
past we have relied mainly on different model architectures to pro-
duce diverse acoustic models. However, results in [22] for multiple
BLSTM models showed that diversity can also be achieved using
different sets of senones (clustered subphonetic units). Therefore,
we have now adopted a variety of senone sets for all model architec-
tures. Senone sets differ by clustering detail (9k versus 27k senones),
as well as two slightly different phone sets and corresponding dic-
tionaries. The standard version is based on the CMU dictionary and
phone set (without stress, but including a schwa phone). An alternate
dictionary adds specialized vowel and nasal phones used exclusively
for filled pauses and backchannel words, inspired by [34]. Combined
with set sizes, this gives us a total of four distinct senone sets.

2.5. Speaker adaptation

Speaker adaptive modeling in our system is based on conditioning
the network on an i-vector [35] characterization of each speaker [36,
37]. A 100-dimensional i-vector is generated for each conversation
side (channel A or B of the audio file, i.e., all the speech coming from
the same speaker). For the BLSTM systems, the conversation-side
i-vector vs is appended to each frame of input. For convolutional
networks, this approach is inappropriate because we do not expect to
see spatially contiguous patterns in the input. Instead, for the CNNs,
we add a learnable weight matrixW l to each layer, and addW lvs to
the activation of the layer before the nonlinearity. Thus, in the CNN,
the i-vector essentially serves as an speaker-dependent bias to each
layer. For results showing the effectiveness of i-vector adaptation on
our models, see [38].

2.6. Sequence training

All our models are sequence-trained using maximum mutual infor-
mation (MMI) as the discriminative objective function. Based on the
approaches of [39] and [40], the denominator graph is a full trigram
LM over phones and senones. The forward-backward computations
are cast as matrix operations, and can therefore be carried out ef-
ficiently on GPUs without requiring a lattice approximation of the
search space. For details of our implementation and empirical eval-
uation relative to cross-entropy trained models, see [38].

2.7. Frame-level model combination

In our new system we added frame-level combination of senone pos-
teriors from multiple acoustic models. Such a combination of neural

Table 1. Acoustic model performance by senone set, model archi-
tecture, and for frame-level combinations, using an N-gram LM.
The “puhpum” senone sets use an alternate dictionary with special
phones for filled pauses.

Senone set Architecture WER WER test
devset SWB CH

9k BLSTM 11.5 8.3 14.3
ResNet 11.7 8.5 14.5
LACE 11.3 8.5 14.7
CNN-BLSTM 11.2 8.5 14.2
Combined 9.6 7.2 12.4

9k BLSTM 11.3 8.2 14.4
puhpum ResNet 11.2 8.4 14.6

LACE 11.1 8.3 14.9
CNN-BLSTM 11.5 8.1 14.9
Combined 9.6 7.2 12.7

27k BLSTM 11.4 7.9 14.3
ResNet 11.3 8.4 14.4
LACE 11.3 8.7 14.3
CNN-BLSTM 11.8 8.5 14.5
Combined 9.7 7.4 12.3

27k BLSTM 11.3 8.0 15.3
puhpum ResNet 11.2 8.1 14.6

LACE 11.2 8.5 14.2
CNN-BLSTM 11.4 8.4 14.4
Combined 9.6 7.2 12.5

acoustic models is effectively just another, albeit more complex, neu-
ral model. Frame-level model combination is constrained by the fact
that the underlying senone sets must be identical.

Table 1 shows the error rates achieved by various senone set,
model architectures, and frame-level combination of all four archi-
tectures. The results are based on N-gram language models, and all
combinations are equal-weighted.

3. LANGUAGE MODELS

3.1. Vocabulary size

In the past we had used a relatively small vocabulary of 30,500 words
drawn only from in-domain (Switchboard and Fisher corpus) train-
ing data. While this yields an out-of-vocabulary (OOV) rate well
below 1%, our error rates have reached levels where even small abso-
lute reductions in OOVs could potentially have a significant impact
on overall accuracy. We supplemented the in-domain vocabulary
with the most frequent words in the out-of-domain sources also used
for language model training: the LDC Broadcast News corpus and
the UW Conversational Web corpus. Boosting the vocabulary size
to 165k reduced the OOV rate (excluding word fragments) on the
eval2002 devset from 0.29% to 0.06%. Devset error rate (using the
9k-senones BLSTM+ResNet+LACE acoustic models, see Table 1)
dropped from 9.90% to 9.78%.

3.2. LSTM-LM rescoring

For each acoustic model our system decodes with a slightly pruned
4-gram LM and generates lattices. These are then rescored with the
full 4-gram LM to generate 500-best lists. The N-best lists in turn
are then rescored with LSTM-LMs.

Following promising results by other researchers [41, 18], we
had already adopted LSTM-LMs in our previous system, with a few
enhancements [22]:
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• Interpolation of models based on one-hot word encodings
(with embedding layer) and another model using letter-
trigram word encoding (without extra embedding layer).

• Log-linear combination of forward- and backward-running
models.

• Pretraining on the large out-of-domain UW Web corpus
(without learning rate adjustment), followed by final training
on in-domain data only, with learning rate adjustment sched-
ule.

• Improved convergence through a variation of self-
stabilization [42], in which each output vector x of
non-linearities are scaled by 1

4
ln(1 + e4β), where a β is a

scalar that is learned for each output. This has a similar effect
as the scale of the well-known batch normalization technique
[30], but can be used in recurrent loops.

• Data-driven learning of the penalty to assign to words that
occur in the decoder LM but not in the LSTM-LM vocabulary.
The latter consists of all words occurring twice or more in the
in-domain data (38k words).

Also, for word-encoded LSTM-LMs, we use the approach from [43]
to tie the input embedding and output embedding together.

In our updated system, we add the following additional
utterance-scoped LSTM-LM variants:

• A character-based LSTM-LM

• A letter-trigram word-based LSTM-LM using a variant ver-
sion of text normalization

• A letter-trigram word-based LSTM-LM using a subset of the
full in-domain training corpus (a result of holding out a por-
tion of training data for perplexity tuning)

All LSTM-LMs with word-level input use three 1000-dimensional
hidden layers. The word embedding layer for the word-based is also
of size 1000, and the letter-trigram encoding has size 7190 (the num-
ber of unique trigrams). The character-level LSTM-LM uses two
1000-dimensional hidden layers, on top of a 300-dimensional em-
bedding layer.

As before, we build forward and backward running versions of
these models, and combine them additively in the log-probability
space, using equal weights. Unlike before, we combine the differ-
ent LSTM-architectures via log-linear combination in the rescoring
stage, rather than via linear interpolation at the word level. The new
approach is more convenient when the relative weighting of a large
number of models needs to be optimized, and the optimization hap-
pens jointly with the other knowledge sources, such as the acoustic
and pronunciation model scores.

We added one more type of LSTM-LM that represents a more
fundamental departure. This LM models the entire dialog sessions
instead of individual utterances, but using the entire history of words
from the start of the session as conditioning information, along with
information about speaker changes and turn overlap. The goal of this
session-based LSTM-LM is to capture global conherence in topic
and style (entrainment), as well as local cross-turn phenomena such
as adjacency pairs; it is described in a companion paper [44].

Table 2 shows perplexities of the various LSTM language mod-
els on dev and test sets. The forward and backward versions have
very similar perplexities, justifying tying their weights in the even-
tual score weighting. There are differences between the various input
encodings for the utterance-based models, but they are small, on the
order of 2-4% relative.

Table 2. Perplexities of LSTM-LMs on Switchboard data
Model structure Direction PPL PPL

devset test
Word input, one-hot forward 50.95 44.69

backward 51.08 44.72
Character input, one-hot forward 51.66 44.24

backward 51.92 45.00
Word input, letter-trigram forward 50.76 44.55

backward 50.99 44.76
+ alternate text norm forward 52.08 43.87

backward 52.02 44.23
+ alternate training set forward 50.93 43.96

backward 50.72 44.36
+ session-level conditioning forward 37.86 35.02

Also shown is the effect of session-level modeling, which
gives a large perplexity reduction of over 20% over a correspond-
ing utterance-based letter-trigram-encoded LM. For inclusion in the
overall system, we built letter-trigram and word-based versions of
the session-based LSTM (in both directions). All LSTM-LMs are
combined log-linearly at the utterance level (after combining for-
ward and backward variants with equal weights).

4. EXPERIMENTAL SETUP

4.1. Data

The data sets used for system training are unchanged [22]; they con-
sist of the public and shared data sets used in the DARPA research
community. Acoustic training used the English CTS (Switchboard
and Fisher) corpora, totalling about 2000 hours. Unlike in previous
systems we have reported, we also added CallHome English acoustic
data (25 hours after segmentation and alignment, weighted 10-fold),
but only in the sequence-training step (to avoid a complete retrain-
ing). This addition improved individual acoustic model WER by
about 0.5% absolute on CallHome test data.

Language model training used transcripts of the same three CTS
corpora, BBN Switchboard-2 transcripts, the LDC Hub4 (Broadcast
News) corpus, and the UW conversational web corpus [45]. The
Switchboard-1 and Switchboard-2 portions of the NIST 2002 CTS
test set were used for tuning and development. Evaluation is carried
out on the NIST 2000 CTS test set, with Switchboard (SWB) and
CallHome (CH) subsets reported.

4.2. Model training

All neural networks in the final system were trained with the Mi-
crosoft Cognitive Toolkit, or CNTK [46] on a Linux-based multi-
GPU server farm. CNTK allows for flexible model definition, while
at the same time scaling efficiently across multiple GPUs and mul-
tiple servers. Training times become feasible by parallelizing the
stochastic gradient descent (SGD) training with a 1-bit SGD paral-
lelization technique [47].

We use the CNTK “FsAdaGrad” learning algorithm, which is an
implementation of Adam [48]. A typical learning rate is 3 × 10−6,
and learning rates are automatically adjusted with a decrease factor
of 0.7. Momentum is set at a constant value of 2500 throughout
model training. For individual acoustic models, we find that train-
ing converges after 1.5 to 2 passes over the 2000-hour training set.
We do not use dropout or gradient noise in our model training, only
the aforementioned spatial smoothing technique for BLSTM model
training.
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Table 3. Results for LSTM-LM rescoring on systems selected for combination, the combined system, and confusion network rescoring
Senone set Model/combination step WER WER test WER WER test

devset SWB CH devset SWB CH
ngram-LM LSTM-LMs

9k BLSTM 11.5 8.3 14.6 9.2 6.4 12.1
9k-puhpum BLSTM 11.3 8.2 14.4 9.1 6.3 12.1
27k BLSTM 11.5 7.9 14.3 9.3 6.3 12.0
27k-puhpum BLSTM 11.3 8.0 15.3 9.2 6.3 12.8
9k BLSTM+ResNet+LACE+CNN-BLSTM 9.6 7.2 12.4 7.8 5.4 10.2
9k-puhpum BLSTM+ResNet+LACE+CNN-BLSTM 9.6 7.2 12.7 7.7 5.4 10.2
27k BLSTM+ResNet+LACE+CNN-BLSTM 9.7 7.4 12.3 7.7 5.6 10.2
27k-puhpum BLSTM+ResNet+LACE+CNN-BLSTM 9.6 7.2 12.5 7.7 5.5 10.3
- Confusion network combination 7.3 5.2 9.8
- + LSTM rescoring 7.2 5.2 9.8
- + ngram rescoring 7.2 5.1 9.8

5. SYSTEM COMBINATION AND RESULTS

5.1. Confusion network combination

After rescoring all system outputs with all language models, we
combine all scores log-linearly and normalize to estimate utterance-
level posterior probabilities. All N-best outputs for the same utter-
ance are then concatenated and merged into a single word confusion
network (CN), using the SRILM nbest-rover tool [49, 34].

Unlike in our previous system [22], we do not apply estimated,
system-level weights to the posterior probabilities estimated from
the N-best hypotheses. All systems have equal weight upon combi-
nation. The prior work had also shown that a CN combination of all
BLSTM system variants (with different senone sets) was highly ef-
fective by itself. Consequently, in the present system we combine all
four BLSTM systems, as well as the four frame-combined systems.

5.2. Confusion network rescoring

As a final processing step, we generate new N-best lists from the
confusion networks resulting from system combination. Following
[50], these are once more rescored using the N-gram LM, as well
as the but also with a subset of the utterance-level LSTM-LMs, and
one additional knowledge source. The word log posteriors from the
confusion network take the place of the acoustic model scores in this
final rescoring step.

Table 3 compares the individual systems that go into the system
combination step, before and after rescoring with LSTM-LMs, and
then shows the progression of results in the final processing stages,
starting with the LM-rescored individual systems, the system com-
bination, and the CN rescoring. The collection of LSTM-LMs (in-
cluding the session-based LMs) gives very consistent relative error
reductions for the individual and frame-combined systems compared
to the N-gram LM (about 24% for SWB and 17% for CH). The sys-
tem combination reduces error by 4% relative over the best individ-
ual systems for both SWB and CH. Confusion network rescoring
gives a small (0.1% absolute) gain on SWB, but not on CH; this is
possibly due to a lack of matched devset data for tuning rescoring
weights.

6. CONCLUSIONS

We have described the latest iteration of our conversational speech
recognition system. The acoustic model was enhanced by adding a
CNN-BLSTM system, and the more systematic use of a variety of
senone sets, to benefit later system combination. We also switched

to combining different model architectures first at the senone/frame
level, resulting in several acoustic combined systems that are then
fed into the word-level combination, based on confusion networks.
The language model was updated with larger vocabulary (lowering
the OOV rate by about 0.2% absolute), additional LSTM-LM vari-
ants for rescoring, and most importantly, session-level LSTM-LM
that can model global and local coherence between utterances, as
well as dialog phenomena. Finally, we added an extra rescoring
step where N-best hypotheses generated from the combined confu-
sion network are reweighted with multiple language models, giving
a small additional gain for the Switchboard test set. Overall, we have
reduced error rate for the Switchboard tasks by 12% relative, from
5.8% for the 2016 system, to now 5.1% for the Switchboard test data,
and by 11% relative, to now 9.8% for CallHome test data. We note
that these error rates are now below those measured by us previously
for a two-pass human transcription pipeline [23].
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