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ABSTRACT

Standard automatic speech recognition (ASR) systems are in-
creasingly expected to recognize foreign entities, yet doing
so while preserving accuracy on native words remains a chal-
lenge. We describe a novel approach for recognizing for-
eign words by injecting them with appropriate pronunciations
into the recognizer decoder search space on-the-fly. The pro-
nunciations are generated by mapping pronunciations from
the foreign language’s lexicon to the target recognizer lan-
guage’s phoneme inventory. The phoneme mapping itself
is learned automatically using acoustic coupling of Text-to-
speech (TTS) audio and a pronunciation learning algorithm.
Evaluation of our algorithm on Google Assistant use cases
shows we can improve recognition of media-related queries
by incorporating English entity pronunciations in French and
German recognizers, with wins/losses ratios of roughly 2-3:1,
without hurting recognition on general traffic.

Index Terms— cross-lingual, speech recognition

1. INTRODUCTION

Speech systems are typically trained and operate at a per lan-
guage level. However, there are various applications where
the correct handling of foreign entities is important for TTS
and ASR. Navigating to foreign geographic locations, query-
ing foreign media entities, and calling personal contacts of
foreign origin are scenarios where robustness to foreign enti-
ties would prevent recognition errors for ASR and a perceived
unnaturalness for TTS services.

For ASR, the focus of our work, building a system that is
robust to foreign entities can be challenging. There is prior
work on training multilingual acoustic models [1, 2, 3], usu-
ally with the objective of building a good baseline recognizer
for languages where training data is limited. To improve ex-
isting systems with language-specific acoustic models, there
are also efforts on building a language robust Grapheme-to-
Phoneme (G2P) model [4] to retrieve the right pronuncia-
tions for foreign entities. We instead use a phoneme-mapping
model that uses a word’s actual pronunciation in the source
language and finds its closest approximation in the target lan-
guage’s phoneme inventory.

Our objective is to maintain the quality of a traditional
per-language recognizer but allow it to accept foreign words
with the mapped pronunciation on-the-fly during decoding
in contexts where foreign entities are expected to be more
prevalent. An example would be when a French-speaking
asks to play an English song. We propose a mechanism that
adapts dynamic classes [5] to incorporate mapped pronuncia-
tions and utilizes contextual biasing [6] to boost the likelihood
of various types of foreign entities only in pertinent contexts.

Developing a phoneme mapping between two language
pairs has been explored in prior literature. Acoustic-phonetic
similarity [7], articulatory feature-based mapping [8], and
learning mappings from data [9] are some common ap-
proaches. A strategy that learns the phoneme mapping using
TTS synthesized audio and the recognizer was explored in
[10]. We expand on this data-driven approach by using a
pronunciation learning algorithm [11] on TTS audio to learn
the mapping between two languages. This algorithm has
the advantage of constraining the parameter space with the
graphemes, instead of relying purely on the audio signals.

In summary, our contribution is twofold: a process for
automatically learning a phoneme mapping with data using
pronunciation learning, and a method to contextually inject
foreign words with correct pronunciations into the ASR de-
coder. Sec. 2 describes the contextual ASR system used to
recognize foreign words, Sec. 3 describes our cross-lingual
mapping algorithm, and Sec. 4 presents evaluations.

2. CONTEXTUAL ASR

In this section we describe how dynamic classes [5] and on-
the-fly language model (LM) rescoring [6] are used to incor-
porate foreign entities’ pronunciations into the decoder based
on context.

2.1. Dynamic Classes

Dynamic classes, introduced in [5], can be injected into an
LM via an arc coming off the unigram state to provide class-
based entities at recognition time. Dynamic classes are con-
structed from a set of entities such as song names, contact
names, device names, etc. into finite state transducers (FSTs).
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If any entities include out of vocabulary (OOV) words, their
pronunciations are obtained on-the-fly and directly included
in the dynamic class. Specifically, for a dynamic class d, we
build a Gd (FST over words) for all OOV words, and then a
d-specific lexicon Ld providing pronunciations for the OOV
words in Gd. The dynamic class FST incorporates the OOV
construct by building G′d as follows:

G′d = Det(Ld) ◦Gd

To correctly recognize foreign entities, we generalize the
dynamic class construction process by additionally consider-
ing the source language for each instance. Based on the lan-
guage information, which can be supplied with the instance
or inferred online using a language classifier, we include any
foreign word whose language is different from that of the tar-
get recognizer into Gd regardless of whether the word is an
OOV or not. During the Ld construction, we use the lan-
guage information to decide from which language’s lexicon
to fetch the pronunciation. We map the pronunciations of for-
eign words into the recognizer language’s phoneme set using
phoneme mapping. The resultant G′d then encompasses their
approximate pronunciations. Figure 1 shows an example of
$SONG dynamic class containing two English song entities
to be used in the French recognizer.

After it is constructed, a dynamic class is spliced into the
base LM with a certain LM cost on the class open tag arc to
avoid over-triggering. As described in the next section, we
then adjust the class LM cost on-the-fly based on contextual
information.

2.2. On-the-fly LM Rescoring

To ensure that the dynamic class is not pruned out during de-
coding, we contextually lower the LM cost associated with
the dynamic class of interest using on-the-fly LM rescoring
(biasing), described in [6].

The context is captured using a set of biasing phrases rel-
evant for a particular dynamic class. For example, in the case
of $SONG dynamic class, relevant phrases are listed in Ta-
ble 1. These phrases include the class name ($SONG) as a
placeholder for any instance belonging to that class.

French biasing phrases German biasing phrases
mets $SONG spiel $SONG
jouer $SONG spiele $SONG

Table 1. French and German $SONG biasing phrases.

The phrases are compiled into a biasing model repre-
sented as a weighted FST. The weight of any n-gram in the
biasing model represents how much the LM cost of that par-
ticular n-gram will be altered. These weights can be learned
from logs or explicitly set per context [6]. In this work, we
use unigram/bigram method of assigning biasing weights,

where all biasing unigrams have identical weights, as well as
bigrams.

For each word emitted during decoding, the cost from the
original LM, G, and the cost from the biasing model, B, de-
termine the actual cost as follows:

s(w|H) =

{
sG(w|H), if (w|H) 6∈ B
C(sG(w|H), sB(w|H)), if (w|H) ∈ B

where sG(w|H) and sB(w|H) are the costs of the word w
with history H from G and B respectively. Using a linear
interpolation together with a minimum function forC ensures
that the costs can only be decreased with biasing:

C(sG(w|H), sB(w|H)) =

min(sG(w|H), αsG(w|H) + βsB(w|H))

Each dynamic class entity is assigned a biasing weight
corresponding to the weight associated to $SONG in biasing
phrases.

3. CROSS-LINGUAL PHONEME MAPPING

Our acoustic coupling method for learning a cross-lingual
mapping relies on a set of pronunciations in the source lan-
guage, a TTS system for the source language that can generate
audio for these pronunciations, and a pronunciation learning
system in the target language. We use these to generate the
source/target language pronunciation pairs that are used to
learn the phoneme mapping; the mapping can then gener-
ate target language pronunciations from novel source lan-
guage pronunciations. Additionally, in our setup, languages’
phoneme inventories are a subset of language-independent
X-SAMPA [12]; therefore, we assume that we only need to
generate mappings for source language phonemes that are not
present in the target language inventory (in practice, 47.5%
of phonemes when mapping English to French, and 20% of
phonemes when mapping English to German).

Given native source language words for which we have
a human-sourced pronunciation, we first synthesize audio of
the pronunciation using a TTS voice in the source language.
Using TTS audio rather than standard datasets allows us to be
certain of the pronunciation used in the audio. To get a repre-
sentative distribution over phonemes in different contexts, we
synthesize the pronunciations of a large set of native words.

To learn the pronunciations from the synthesized audio,
we use the method described in [11], which uses FSTs to gen-
erate pronunciation candidates based on the graphemes. The
pronunciation model score from the FST is combined with
the acoustic model score to determine the most likely pronun-
ciation given the audio and the graphemes. The FST used
is created from an RNN-transducer - a sequence-to-sequence
neural model. This scheme provides an infinite number of
weighted pronunciation candidates, with the graphemes serv-
ing as a useful additional cue. For example, for an acoustic

5925



Fig. 1. Example of a $SONG dynamic class with two English song names (“Hey Jude” and “Stay”) and their original English
pronunciations mapped onto French phoneme set.

model trained only on French data, acoustic similarity alone
might suggest a mapping from English to French of the glot-
tal fricative /h/ to the rhotic uvular fricative /R/. However, in
practice, we might expect French speakers to assign a high
weight to the difference in rhoticity, making a deletion of /h/
the better model.

Given the source and target language pronunciation
pairs, we find the best alignments between the constituent
phonemes, similarly to the first step of training a traditional
joint-sequence grapheme to phoneme model [13]. We allow
a one-to-many source phoneme to target phoneme alignment.
Each phoneme in the source pronunciation can correspond to
0-2 consecutive phonemes in the target pronunciation. Let

q = (s, t) ∈ (S ×
⋃

i=0,1,2

Ti).

where S is the set of source phonemes, T is the set of target
phonemes, and Ti is the set of all strings made of elements
of T of length i. The set of alignments between a source and
target phoneme sequence s and t is

A(s, t) = { q1...qn ∈ q∗| s1...sn = s; t1...tn = t }

where qi = (si, ti).
We apply the expectation-maximization algorithm on an

observation set O of (s, t) pairs to iteratively estimate values
for p(q) that optimize the likelihood of the training data:

log(p(O)) =
∑

(s,t)∈O

log(
∑

q1...qn∈A(s,t)

n∏
i=1

p(qi))

The mapping is then defined as

mapping
S→T

(s) =

{
s, if s ∈ T
argmaxt p(s, t), otherwise

The one-to-many mapping is expected to useful in the
case of diphthongs - by definition, a combination of two vow-
els sounds - or in cases like the velar nasal /N/ which might
be better approximated by a concatenation of the palatal nasal
and velar stop /n g/ than by either of them alone.

We compare acoustic coupling results to a linguistically
informed manual mapping with the same constraints: each
source language phoneme not in the target language inventory
maps to a sequence of 0-2 target language phonemes. Be-
tween the manual and acoustic coupling mapping, there were
differences in the mappings for 30% of all English phonemes
when mapped to French, and 10% when mapped to German.

4. EVALUATION

To evaluate our system we explore recognizing English media
queries using the French and German recognizers, as this is
a common use case for cross-lingual entities. We collected
1000 popular English songs to construct a $SONG dynamic
class to be used during contextual rescoring. For cross-lingual
mapping we evaluate both the human-generated mappings
and the mappings generated from acoustic coupling.

We show two types of experiments. In Sec. 4.1, we eval-
uate the the word error rate (WER) of our system on a test
set with English media song utterances using the French and
German recognizers. In Sec. 4.2, we compare our system to
different baselines using real anonymized speech traffic that
includes queries to play media entities.

4.1. ASR test sets

To evaluate the effect of contextual rescoring and cross-
lingual mapping in our speech recognizer, we set up test sets
and measured WERs for our different mapping algorithms.
Finding and transcribing utterances for specific cross-lingual
scenarios (in our case English media) can be challenging. An
efficient alternative is to generate test sets using TTS voices.
In our case we used an English TTS voice with a US accent to
generate 1000 English media utterances and evaluated them
on French and German recognizers. Here, the baseline is
a production voice search recognizer trained primarily on
single-language data.

Setup French German
Baseline 95.7 63.6
Contextual rescoring 27.7 14.3
Contextual rescoring with
Human-generated mapping

23.4 7.8

Contextual rescoring with Acoustic
coupling mapping

19.9 6.5

Table 2. WERs [%] across different contextual rescoring and
cross-lingual mapping setups.

We see in Table 2 that the baseline target recognizers con-
sistently do a poor job at recognizing English media utter-
ances. However, using contextual rescoring and additionally
adding mapped pronunciations bring the WER down. We also
performed experiments on test sets sampled from general traf-
fic and found no WER regressions.
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4.2. ASR SxS

To assess our system on real speech traffic, anonymized utter-
ances were directed to both a baseline system and an experi-
mental system for a SxS comparison. If there was a difference
in the recognition result, both transcripts were sent to human
raters to rate how well the transcript matched the audio. We
collected at least 500 utterances that had differences between
the two systems to ensure statistical significance. The two
metrics we report are:

• The percentage of traffic that was changed.
• The ratio of wins to losses. A win refers to an utterance

where the experimental system was rated higher than
the baseline system.

As shown in Table 3 we have a setup where we constrain
the input to only media queries. We do this by only select-
ing utterances that include certain action verbs indicating a
request to play media, as is captured with our biasing phrases
in Table 1. We also test on general Google Assistant traffic.

Setup
#

Input
traffic Baseline system

1 Media No contextual rescoring

2 Media Contextual rescoring without
cross-lingual mapping

3 General No contextual rescoring

Table 3. Input traffic types and baselines for SxS experiments

For each SxS setup in Table 3 the experimental sys-
tem uses contextual rescoring with the human-generated
cross-lingual mapping applied to generate the pronuncia-
tions. Setup 1 compares our system against a baseline where
there is no contextual rescoring. Setup 2 compares it with a
system without mapped pronunciations to exclusively evalu-
ate their effect. Setup 3 replicates Setup 1 on general traffic
to verify that unrelated utterances are not negatively affected.

Language Setup # Percentage
changed Wins/Losses

French
1 1.4% 3.1
2 0.6% 3.1
3 0.3% 3.2

German
1 0.3% 2
2 0.17% 2
3 0.06% 1.3

Table 4. SxS experiment results for each setup in Table 3

The results for Setup 1 in Table 4 show quality gains pro-
duced by our system. The good wins/losses ratio suggests
that the combination of cross-lingual mapping and contextual
rescoring is a viable method to overcome the absence of these
foreign entities in the recognizer. We attribute the smaller

impact on the German recognizer to the linguistic similarity
between English and German. Some examples of wins are:

• Joue MIGO Piou→ Jouer Help Me Help You
• mets moi que bye→ mets Rockabye
• spiel Amazon Mbel→ spiel I’m a Gummy Bear
• Spiel chen der Wii→ spiel Legendary

The percentage of traffic changed is expectedly lower
when the baseline system already includes the regular dy-
namic class without phoneme mapping (Setup 2), but a good
wins/losses ratio is still obtained by adding the mapped pro-
nunciations. Setup 3 confirms that we are able to achieve the
gains for media queries without affecting other utterances.

4.2.1. Human-generated mapping vs. acoustic coupling

We performed a SxS comparing acoustic coupling to a manual
mappings baseline. The percentage of changed queries was
low (<0.05%), indicating acoustic coupling shows a compa-
rable gain over contextual rescoring with no mapping.

Though the difference in overall performance was not sig-
nificant, the recognition differences show the ambiguity of the
phoneme mapping problem, as both wins and losses result
from changing the mapping of rhotacized schwa /@/̀:

• mets la chanson merci→ mets la chanson mercy
• mets believer ... → mets believe her ...

and from altering the mapping of diphthong /oU/:

• Spiel des Passito→ spiel Despacito
• spiel Despacito ... → Spiel des Passito ...

It is possible that acoustic coupling’s use of graphemes
to inform the mapping is helpful in cases where speakers
may also adjust their pronunciation of foreign words based
on graphemes. For example, this win resulted from acoustic
coupling choosing to map dental fricative /T/ to alveolar stop
/t/ instead of alveolar fricative /s/, though the latter may be
linguistically more similar:

• Jouer Whitest ... → Jouer Wild Thoughts ...

5. CONCLUSION

We’ve presented an approach to recognize foreign entities
based on context without hurting recognition on native words,
through dynamic classes with pronunciation mapping and
contextual rescoring. This allows us to reduce the WER on
foreign media words by an additional 55% on top of the gains
achieved using contextual rescoring, and the gain translates
to improvement on real media queries. The phoneme map-
ping learned through acoustic coupling - without ground truth
target language pronunciations or linguistic knowledge - is
comparable to a human-generated mapping.

We would like to thank Alyson Pitts, Toby Hawker, Tony
Bruguier, and Zelin Wu for suggestions and guidance.
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