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ABSTRACT

The paper presents a new approach to extracting useful in-
formation from out-of-vocabulary (OOV) speech regions in
ASR system output. The system makes use of a hybrid de-
coding network with both words and sub-word units. In the
decoded lattices, candidates for OOV regions are identified
as sub-graphs of sub-word units. To facilitate OOV word re-
covery, we search for recurring OOVs by clustering the de-
tected candidate OOVs. The metrics for clustering is based
on a comparison of the sub-graphs corresponding to the OOV
candidates. The proposed method discovers repeating out-
of-vocabulary words and finds their graphemic representation
more robustly than more conventional techniques taking into
account only one best sub-word string hypotheses.

Index Terms— Out-of-vocabulary Words, Robust ASR

1. INTRODUCTION

Human speech is by nature non-finite: new words are con-
stantly emerging, and it is therefore impossible to describe
a language fully. Words which are not accounted for in the
language model (LM) are called out-of-vocabulary (OOV)
words, and they constitute one of the biggest challenges in
ASR and other speech processing tasks. The problem is that
if a word is not in the dictionary and language model, the sys-
tem cannot output it during the decoding. Instead, the system
will try to find the (acoustically) closest in-vocabulary (IV)
word, often confusing the end user and interfering with the
proper decoding of the words around it. The problem gets
even more interesting if one considers that OOVs are usually
topic-specific words or proper names, meaning they are often
key words important for proper understanding of the text.

OOV research is most prominent within the frameworks
of speech recognition and key word spotting (KWS). While
in KWS the graphical representation of the query is known
[1, 2, 3], in ASR task OOVs are completely unseen and thus
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have to be discovered and modeled without any knowledge
of what they are. This is the task that we tackle in this pa-
per. One of the most common ways to deal with OOVs in
the framework of ASR is to use lattices of sub-word units,
which can be either linguistically motivated (phonemes, syl-
lables, etc.) or data driven [4]. For efficiency the system can
first work on a word level and get to a sub-word level only
in case the output does not fit pre-set conditions (e.g. min-
imum confidence score etc.) [5]. A successful method of
discovering and learning OOV words exploits a hybrid sys-
tem which combines word and sub-word units in its language
model [6, 7, 8, 9]. In this case if the system output is, in
some region, a string of sub-word units instead of a string of
words, it means that an OOV word is discovered. A variation
upon this is a flat hybrid sub-lexical model that substitutes
rare words with their phoneme strings to obtain training data
for the language model, thus combining word and sub-word
levels into a single hybrid LM [10].

The main focus of this article will be on what happens af-
ter a successful discovery of OOV words. If they are discov-
ered in the form of strings of sub-word units, a free clustering
of these hypothesized strings can be performed in order to dis-
cover recurring sequences and to add them to the dictionary
as new words [11, 12, 13]. The clustering criteria may include
phonetic and acoustic features and context information [14].
Unlike previous approaches, the work covered in this article
attempts to automatically discover new words in a decoding
lattice rather than on one-best hypothesis. A sub-word decod-
ing lattice may contain paths that correspond to slightly dif-
ferent pronunciations. Thus, using clustering lattices instead
of one-best output strings allows us to discover OOV patterns
even if the same OOV is pronounced somewhat differently on
different occasions. Moreover, this approach should be more
robust in the case of an ASR output of low quality.

2. OOV RECOVERY PROCEDURE

2.1. OOV Detection with Hybrid Decoding Graph

Weighted Finite-State Transducer (WFST) based decoders
[15] limit the decoding search space by constructing a decod-
ing graph out of different knowledge sources. In Kaldi setup
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Fig. 1. OOV candidate in lattice form

[16], the decoding graph is a composition H ◦ C ◦ L ◦ G,
which combines different components of the ASR model into
a huge Hidden Markov Model (HMM), on which decoding
is performed. It represents search space constraints on each
of the levels in the system: G is a weighted acceptor that
encodes language model, L is the lexicon, C represents the
context-dependency and H contains the HMM definitions
of acoustic units. Thus, a path through the decoding graph
encodes a mapping from a string of input symbols (encodings
of acoustic units) to a string of output symbols (words). The
weights on the links constituting a path in the HCLG graph
are combined probabilities from the word LM, phoneme
LM, and HMM transition probabilities, while acoustic model
probabilities (HMM emission probabilities) are calculated
during decoding using the PDFs corresponding to HCLG’s
input symbols. The HCLG graph thus defines transitions
and their probabilities of the decoding HMM, while the input
symbols of the graph identify HMM state output distributions.
For more information on WFSTs for ASR, see [15].

The issue with OOV words in such a framework is that
although we can have OOVs represented by a special word
in the LM, there is no dictionary entry that specifies what
string of acoustic units represents each particular OOV. Pho-
netically OOVs are often modeled with a garbage acoustic
model. While practical, such a solution does not provide good
acoustic representation of an OOV, so in our hybrid system
we model the likely phonetic sequences representing an OOV
by n-gram subword LM trained on the lexicon. Our hybrid
system is built according to [17] with phonemes chosen as
subword acoustic entities. The phoneme FSTs representing
OOVs in the hybrid G graph allow an OOV to be correctly
modeled as the combination of the probability of the OOV be-
ing in the utterance that is obtained from the language model
and the probability of the OOV being realized as a specific
phoneme path. In the hybrid graph, we can manually control
the preference that the system shows towards paths contain-
ing phonemes. This is achieved by boosting the probability
of following the OOV link and by increasing or decreasing
probabilities inside of the phoneme sub-graph to encourage
choosing paths through OOV [17].

2.2. OOV Extraction from Lattices

In order to find recurring OOVs, we decode the data with
the hybrid graph described above, which gives us hybrid de-
coded lattices containing both paths with words and paths
with phonemes representing OOVs. First, we have to extract
OOV candidates in form of phoneme sub-lattices from our de-

coded lattices, i.e. separate sub-lattices of phonemes from the
rest of the lattices containing words that will not be used in
further information extraction. We will search for sub-lattices
starting with an OOV symbol that marks the entry point of
phoneme lattice and ending with <phnsilsp> output symbol
which marks the exit point. It is memory and time consuming
to do so as we have to traverse lattices forward and backward
to ensure that all phoneme paths are found.

We can speed up the process of OOV extraction if we first
apply indexing to decoded lattices. In our experiments, we
used reverse indexing proposed in [18] for the task of key
word spotting. The output of this indexing procedure is a tree-
like WFST which contains all partial paths through the lattice,
of which we care only about subword ones. On the output
there are paths’ weights and start/end timings. A tree-like
structure is fast to traverse, and after the OOV candidates are
extracted , the minimization operation will return them to the
structure they had in the decoded lattices (see Fig. 1).

After they are extracted from the index, OOV candidates
are represented as probabilistic phoneme lattices that now
contain both the decoding graph probabilities and acoustic
scores. The weight of every path of an OOV candidate lattice
can be transformed to the posterior probability via weight-
pushing in log semiring [15]. Lattices are better as OOV
candidates than one-best paths, as they can encode the uncer-
tainty in the OOV’s acoustic realization. We discover lattices
that represent the same OOV with the help of clustering.

2.3. OOV Candidates Clustering

As the metric which decides if two OOV candidates belong
to the same word, we introduce composition score, which is
calculated as following: after we perform composition of two
lattices, the composition score is zero if the resulting lattice is
empty. This means that there are no common paths between
these two lattices. If the composition output is not empty,
though, it means that there is at least one common path in
these two lattices. The composition score is then the proba-
bility of the shortest path of this composition, which can be
interpreted as the probability of both OOV candidates being
present in the recording and both being pronounced as the
same sequence of phonemes.

In the beginning, pairwise composition scores of all the
OOV candidates are put into a matrix. At each step of the
clustering, the system looks for the biggest composition score
and performs the union of the two corresponding OOV can-
didates. The newly united lattice preserves paths from all of
the initial lattices that were merged into it at different steps.
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At the end of a clustering step, pairwise composition scores
involving the two merged candidates are recalculated by per-
forming the composition of the newly merged candidates with
all other candidates. The composition score is a natural stop-
ping criterium for the clustering - if it is too small, we might
not want to merge these candidates.

After the clustering, the system looks at the OOV candi-
dates that have more than 2 occurrences based on the clus-
tering. These candidates are represented by the union of all
the phoneme paths in all these occurrences. Now further ac-
tions can be taken to recover the words and add them to the
system. For example, a phoneme-to-grapheme (p2g) model
trained on the dictionary [19] can be applied to the best path
or to the whole lattice of a candidate to propose new entries
to the dictionary.

3. EXPERIMENTAL SETUP

3.1. Data and System Description

For the experiments, we have selected LibriSpeech ASR cor-
pus of audiobooks1 for its size and quality. The language
model provided with LibriSpeech dataset is a 3-gram ARPA
LM trained on 14500 public domain books. The dictionary
contains 200000 words. The phonotactic language model is
also a 3-gram ARPA LM trained on the dictionary. The sys-
tem is trained using Kaldi toolkit [16], slightly altered to ac-
commodate for hybrid training. From LibriSpeech, 100 hours
of clean data are used for system training, and a separate test
set of 5 hours and 20 minutes for system performance evalua-
tion. There is no speaker overlap between test and train data.
Further discovery of OOVs is done on a bigger dataset of 360
hours. This gives enough data to find repeating OOV patterns
and learn their acoustic representation.

The sequence of systems in Kaldi baseline (nnet3 recipe)
is: (i) HMM/GMM monophone system, (ii) triphone system
with MFCC + ∆ + ∆∆ features, (iii) triphone system with
LDA+MLLT, (iv) triphone system with LDA+MLLT+SAT
(v) DNNs on top of the fMLLR features, using the decision
tree and state alignments from the LDA+MLLT+SAT system
as supervision for training. The WER that is possible to ob-
tain with this setting is 11.61%. Note that it is more than was
reported by [20], but this baseline is already for the system
with artificially chosen and excluded OOVs at 1.5% OOV
rate.

3.2. OOV Simulation on LibriSpeech Dataset

In a real-world scenario, OOVs would be newly-coined words
and names, but in audiobooks, this is not a viable setup. The
corpus majorly consists of free domain books, which are
predominantly from 19th century. One of the possible sim-
ulations of the real-world scenario is to "reverse" the task
and designate archaic and out-of usage words as OOV words.

1http://www.openslr.org/12/

These words are not likely to be in a modern LM trained on
Internet data.

In order to choose OOV words, we used Google ngram
dataset of word usage statistics in books [21]. For each word,
the database provides its number of occurrences in sources
published each year over the last 5 centuries. By normaliz-
ing this number by the total number of words in this year’s
publications, the relative frequency of this word in this year is
obtained.

For our purposes, words with twice as much frequency
before year 1900 than after 1900 are chosen as OOVs. More-
over, all names are also added to the OOV list. If the word
is a name can be checked by the relative number of its occur-
rences in the ngram with a capital letter and without.

The resulting list of OOVs picked as described above
consists of 1000 designated OOVs, which present an example
of 19-century bookish English. For example, it includes such
words as INTERPOSED, HASTENED, MADEMOISELLE,
INDIGNANTLY, COUNTENANCE, etc. The words’ fre-
quency in the 360 hours dataset ranges from 0 to 296 refer-
ence occurrences, with the mean of 51 occurrences.

With the OOV list obtained as a result of this method,
the OOV rate (percentage of OOVs in all the words) reaches
1.5%.

4. DISCUSSION OF THE RESULTS

4.1. OOV Detection Results

The baseline system as described in Section 3 achieves
11.61% WER and zero f-score (as proposed in [13]) if es-
timated on one-best output on the 5.3 hour test set. This
means it is not capable of detecting OOV candidates at all. In
a hybrid system, hybrid parameters described in [17] can be
changed to trade-off between detecting more OOV candidates
and retaining a good WER. The following experiments are
performed on a hybrid system with OOV cost = -10, phoneme
LM scaling factor = 0.8 and phoneme insertion penalty = 0.
This system provides an f-score of 1% at 11.77% WER on
the test set.

When evaluating the OOV detection performance on full
lattices in comparison to a one-best output, benefits of the
full lattice approach can be observed. On 360 hours of data,
extracting OOV candidates as phoneme strings from one-best
decoding output results in just 1247 OOV candidates, while
from the full lattices we get 15991, which is more than 12
times more.

4.2. Clustering Procedure Analysis

To evaluate the hierarchical clustering of OOV hypoteses and
estimate the stopping point, we’ve looked at the clustering
quality with Adjusted Rand Index, a standard way of analyz-
ing comparisons between two clusterings [22]. At each step
of the clustering procedure, we compared the current hypoth-
esis clustering with the true clustering given by the word la-
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Fig. 2. Composition Score and Adjusted Rand Index Score in
hierarchical clustering of OOV hypotheses.

bels obtained from alignment with a full dictionary. While
ARI is small due to the huge number of initial clusters, it
keeps growing while the composition score is big enough to
create mergings that make sense and falls when the system
starts over-merging clusters (See Fig.2).

4.3. OOV Recovery Results

Having proved that full lattices are better than one-best out-
put for OOV detection, we will now prove the same for OOV
recovery based on subword FST clustering.

Below are the OOVs that are obtained from the clustering
with composition score threshold 0.01 of phoneme strings
from one-best decoding output results. The corresponding
graphemic representation is obtained from a p2g system
trained on the same dictionary as the phonotactic LM [19].
Only the OOVs that are a result of clustering of more than
2 candidates are considered, which produces the following 7
recovered words:

COURAGE K ER IH JH
VOYAGE V OY IH JH
FLANE F L EY N
KLEY’S K L IY Z
SALOOSKI S AH L UW S K IY
IMETHEUS IH M IY TH IY AH S
ANCTIOUSLY AE NG K SH AH S L IY

As can be seen, less than half of the words make sense.
Only 2 of the OOV words out of 1000 are recovered correctly
and one (ANCTIOUSLY) is close enough to be recognizable.
This gives us a recovery rate of 0.3%. To compare, below
are the 20 OOVs that are obtained with clustering candidates
obtained from full decoding lattices with 0.01 threshold. In
the brackets is the number of the word’s reference occurrences

where applicable. Again, only OOVs that are the result of
merging more than 2 candidates are considered:

COURAGE (288) K ER IH JH
VOYAGE (120) V OY IH JH
THRACE TH R EY S
THRONG (48) TH R AO NG
SNESS S N AH S
UNESE AH N IY Z
ATHO’S AE TH OW Z
HITHER (95) HH IH DH ER
IGARLY (176) IH G ER L IY
SAVAGE (182) S AE V IH JH
WELLING (82) W EH L IH NG
ANXIOUS (296) AE NG K SH AH S
BOLDLY (68) B OW L D L IY
TRICHERY (43) T R IH CH ER IY
DIGNITY (190) D IH G N AH T IY
ERLOGINGS ER L AA JH IH NG Z
ERNESSNESS ER N AH S N AH S
ANCTIOUSLY (99) AE NG K SH AH S L IY
CORMALIS K AO R M AE L AH S
HITHERINTHITHER HH IH DH ER IH N TH IH DH ER

Of these 20, 8 are ideally recovered words from the 1000
on the OOV list, which is four times as many as with one-best
approach. Furthermore, there are some close-to-ideal recov-
eries, like a name from The Three Musketeers, and 6 words
that are still recognizable, although the graphemic representa-
tion is not completely right. So the OOV recovery rate in full-
lattice clustering equals 1.4%, which is more than 4 times bet-
ter than one-best clustering. Adding these newly-discovered
OOVs to the dictionary with the learned pronunciation and
to the LM as unigrams with the same probability as an OOV
reduces WER from 11.77% to 11.62%.

Of special interest are entries "SNESS" and "HITH-
ERINTHITHER". The first is a suffix, which can help with
the recognition of nouns that are derived from adjectives
using this morpheme. The second is a phrase "hither and
thither", which repeats itself more often in the data than any
of its parts separately. As this phrase has a distinct meaning
and usage, it may be profitable to treat it as an individual
lexical entity in a language model.

5. CONCLUSION

This article has explored the possibilities of OOV recovery
through fst-based sub-word unit clustering. It has been shown
that the newly-proposed lattice-based approach outperforms
one-best approaches both in terms of OOV detection and in
terms of the recovery of phonetic and graphemic representa-
tions of OOV words. The proposed system shows promise of
enhancing ASR user experience by bringing to her attention
newly discovered words that may be added to the dictionary
almost without adjustments.
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