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ABSTRACT

Many state-of-the-art automatic speech recognition (ASR)
systems adopt system combination techniques to improve
recognition performance. In this paper, we investigate the
possibility of transferring knowledge between models for
different noisy speech domains and integrating these models
via system combination. The first contribution of our work
is the use of progressive neural networks for modeling the
acoustic features of noisy speech. We train progressive neu-
ral networks on subdivided noisy data to achieve knowledge
transfer between different noise conditions. Our second con-
tribution is an improved multi-stream WFST framework that
combines the output of the progressive networks at longer
timescales (e.g., word hypotheses). The score fusion is per-
formed by a trained LSTM at the word boundary on the
decoding lattice. By adopting both knowledge transfer and
system combination techniques, we achieve improved per-
formance compared with independently trained deep neural
networks.

Index Terms— Progressive neural networks, system
combination, automatic speech recognition

1. INTRODUCTION

The use of artificial neural networks in speech recognition has
been studied for a couple of decades. The introduction of
more efficient training methods has enabled neural networks
to grow deeper with larger modeling powers. Since the spread
of deep neural networks (DNNs), applications of neural net-
work based speech recognition systems have generally out-
performed traditional GMM systems.

System combination is one way to improve final speech
recognition results. In this area of research, several kinds
of combination techniques have been proposed, from frame-
level acoustic score fusion, e.g. multi-band or multi-stream
systems, to word-level combination that works on recognized
sentences, e.g. ROVER [1] and CNC [2, 3]. Among these
techniques, multi-band and multi-stream combination [4, 5]
combines posterior scores generated by DNN acoustic mod-
els at the frame level and gains improved recognition perfor-
mance. During the DNN training, datasets can be divided

into sub-bands or subsets, and a DNN is trained independently
from other DNN models on one of the sub-bands or subsets.

A potential issue of subdividing datasets is that each DNN
model is trained with a smaller amount of data, which may re-
sult in a suboptimal modeling power in each sub DNN system.
Inspired by transfer learning that can transfer learned knowl-
edge from other datasets to the current models, we experiment
with applying knowledge transfer techniques to system com-
bination frameworks. Our proposed method treats sub DNN
systems as correlated instead of independent entities, where
each sub system, in addition to its corresponding sub dataset,
also takes the output of other trained sub systems as input,
which achieves knowledge transferring between sub systems.

Progressive neural networks (ProgNets) [6] can be uti-
lized to transfer knowledge between domains. ProgNets were
first applied in reinforcement learning on Atari tasks, where
the visual features learned in one game were transfered to an-
other game during the training, and it has shown to produce
positive transfer between even very different games. In ad-
dition, ProgNets have the ability to prevent catastrophic for-
getting by freezing the parameters of the previously trained
model during training. ProgNets have proved to be effective
in training robots and emotion recognition [7, 8].

In this paper, we report our experiments integrating
ProgNets into system combination for robust speech recog-
nition. We adapt our earlier work on multi-stream WFST
recognition, integrating a neural network combination func-
tion. In Section 2, we introduce both the ProgNets and multi-
stream WFST frameworks. Section 3 describes our datasets
and experimental setup. Finally, we present and discuss our
results and future work.

2. METHODS

2.1. Progressive Neural Networks (ProgNets)

ProgNets are constructed by multiple columns, each of which
corresponds to a neural network. For each new task, a new
column will be created based on previously trained system(s).
During the training, all weights of previously trained systems
are frozen and the output of each layer of the frozen networks
are then fed as input of the corresponding layers in the new
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Fig. 1. Example of a progressive neural network. The first
two columns are trained previously and connected through
lateral connections to the current column.

model, through lateral connections.

A progressive network with a single column is just a
standard deep neural network; as the number of columns in-
creases, the input to a hidden layer becomes the activation of
its lower layer and also that of the corresponding layers of
previous columns. Each layer in a progressive network can
be expressed as:
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i is the weight matrix of layer i of column k,
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i is the activation of layer i in

column k, and f is the activation function. In [6], an adapter
layer is used to transform a lateral connection when the struc-
ture between columns of ProgNets is different. However, we
do not use adapter layers in our system, because we adopt a
homogeneous structure for all the columns in the ProgNets.

Figure 1 shows the structure of a progressive neural net-
work. The dashed lines are used for training the first two
columns and are frozen for the current training. In the figure,
the columns of the ProgNets are presented as having the same
shape, but they do not have to be. ProgNets allow columns
with different network structures, in which case adaptations
and weight scalings may need to apply.

2.2. Multi-stream WFST combination framework

Different techniques have been proposed for system combi-
nation in speech recognition, including ROVER, CNC and
multi-band and multi-stream systems. Although these meth-
ods have achieved improved performance, there lacks an ef-
fective framework that allows the combination of acoustic
models with different decision tree structures at different lev-
els of the speech recognition pipeline.

In our previous work [9], we proposed a WFST frame-
work for integrating disparate systems while decoding in one
pass. Rather than combining the word sequences output by
different recognition systems, this framework tracks multi-
ple scores from different sources during lattice generation,
and combines scores at some intermediate level (frame, state,
phone, word, or utterance). This allows the combination of
different types of models in the speech recognition pipeline
(e.g. acoustic models, pronunciation models and language
models) in the decoding phase to achieve better single-pass
recognition performance. We extend the standard one-label
WFST to carry multiple labels and weights on the arcs to
combine different models in decoding. When used for acous-
tic model combination, each of the labels corresponds to a
tied triphone state from a system, and the weight is the acous-
tic score computed by the corresponding acoustic model.

The semiring structure in this framework is also extended
for weight computation. A function will be used to decide
how the scores from different models will be fused at the de-
sired combination point. The most straightforward choice of
the combination function is selecting the one with the max-
imum partial likelihood, but other functions, like averaging,
inverse entropy or neural networks can be used. Figure 2 il-
lustrates the multi-stream WFST framework. As shown in
the figure, each arc has a vector of scores, since we extend the
WFST to carry information from multiple models.

We use a novel approach by taking the original speech
signal and deciding which streams to trust in building a com-
bination function. We train an LSTM to predict whether a
stream is likely to output the correct hypothesized unit (word).
The input of the LSTM is a sequence of acoustic frames and
the output consists multiple sigmoid units, each of which cor-
responds to an acoustic model. For each frame, the LSTM
outputs a set of scores, which can be seen as the confidence
of the systems and used to weight the posteriors. The train-
ing targets are generated by comparing the alignment from
each subsystem with the alignment generated by the baseline
system. The target of each frame for the corresponding sig-
moid unit is 1 if the labels match, otherwise 0. Since LSTMs
are able to accumulate information about the input over time,
we expect that it can be better at predicting the most suitable
acoustic models by capturing the noise information in longer
range of the acoustic input.

In this study, we focus on combining acoustic models
trained for disparate noisy environments. These acoustic
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Fig. 2. Illustration of the multi-stream WFST framework.
The combination is executed on a lattice.

models each have different senone decision trees, so combin-
ing information at the word level or frame level is easier than
at the HMM state level. See [9] for additional model details.

3. DATASETS AND FEATURES

For our experiments, we used two noisy datasets: CHiME2
[10] and CHiME3 [11]. Both datasets are constructed based
on the WSJ0 corpus.

The CHiME2 dataset includes 7138 utterances of 83 dif-
ferent speakers. For each of the utterances, a randomly se-
lected SNR within the range of -6 to 9 dB is applied. In total
there are 6 SNR levels in the training set, which are -6, -3,
0, 3, 6, 9 dB. The development set contains 409 noisy utter-
ances from 10 speakers, and the evaluation set includes 330
noisy utterances from 8 other speakers. Our approach is to
use a different progressive network for each SNR condition.

CHiME3 dataset contains simulated and real noise speech
utterances, which are generated in 4 different noise environ-
ment: café (CAF), street junction (STR), public transport
(BUS) and pedestrian area (PED). The training set has a total
of 8728 noisy utterances, with 1600 real noisy utterances
recorded by 4 speakers and 7138 simulated noisy utterances
from the 83 recorded speakers of the WSJ0 SI-84 training
set. The development set consists of 3280 utterances of 4
speakers other than the ones included in the training set, and
the evaluation set contains a total of 2640 utterances of the 4
other speakers. For this dataset, we construct a progressive
network for each noise condition.

The features used to train the DNNs are 13-dimensional
MFCC features extended with deltas and double-deltas. Then
they are adapted with LDA+MLLR transformations. Finally
the fMLLR transformation is applied to reduce speaker vari-
ance. We note that other feature representations may produce
better recognition results, but we use this setup to be consis-
tent with prior work.

4. EXPERIMENTAL SETUP

We use fully connected DNNs as the building blocks for the
experiment. The DNNs used as the baseline in both of the
CHiME2 and CHiME3 experiments shared the same struc-
ture, which had 7 sigmoid layers and a softmax output layer.
The baseline DNNs were trained on all of the noisy training
data, and the state-level minimum Bayes risk (sMBR) crite-
rion was used, before which the cross-entropy trained DNNs
were used to generate the alignments as well as the lattices
for the sequence training.

We then divided the noisy training into subsets, each of
which corresponded to one of the noise conditions. For com-
paring with the ProgNets, separate DNNs, which shared the
same structure of the baseline DNNs, were trained, and com-
bined with the multi-stream WFST framework.

Each column in the ProgNets also used the same structure
as the baseline systems. Each ProgNet was trained using data
from a sub training set. We highlight the differences across
datasets below:
CHiME2: in the first experiment, we trained 3-column
ProgNets. In this configuration, the output column corre-
sponds to the target SNR (and is trained on the corresponding
SNR subset), and the other two columns are chosen to be the
subsets which have the closest SNR levels to the target SNR.
For example, when training ProgNets on the data subset with
0 dB SNR, the other 2 columns will be the ones correspond-
ing to -3 dB and 3 dB SNR. We also trained a 6-column (full)
ProgNet, the columns of which were progressively trained
from -6 dB to 9 dB (except the target SNR), followed by an
output column of the target SNR.
CHiME3: For each of the four different noise conditions, a
full 4-column ProgNet was trained. The predecessor columns
were taken from other noise conditions in random order.

For training the ProgNets, parameters of the previously
trained columns were kept fixed and only the current column
and the lateral connections were trainable. The dropout, with
the rate of 0.5, was used during the training of the ProgNets
to avoid overfitting.

For system combination, we experimented with 2 ways to
combine the separately trained DNNs and ProgNets. We first
tried the frame-level posterior fusion, which is one of the most
straightforward ways to combine different acoustic models.
We took the average of the posteriors output by the ProgNets
and used the average score as the acoustic score in the stan-
dard WFST decoding process. Then we experimented with
the word level combination, under the multi-stream WFST
framework. Here, a 2-layer LSTM was trained to predict the
most reliable models to be used at the word boundary.

5. RESULTS

In this section, we report our results obtained from the above
experiments. Table 1 shows the word error rates for com-
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Experiments Combination level WER
Baseline - 21.1%
Independent DNNs Frame-avg 20.9%

Word-lstm 20.4%
ProgNets-3col Frame-avg 20.7%

Word-lstm 20.2%
ProgNets-full Frame-avg 20.6%

Word-lstm 20.2%

Table 1. Experiment results for the CHiME2 dataset. The
row of ProgNets-3col shows the results for the ProgNets with
3 columns, and the row of ProgNets-full shows the results
for the ProgNets with 6 columns correspnding to the 6 SNR
levels in CHiME2.

Baseline ProgNets-full
-6 dB 36.9% 36.3%
-3 dB 27.3% 25.7%
0 dB 21.2% 20.1%
3 dB 16.1% 15.3%
6 dB 13.1% 12.7%
9 dB 11.9% 11.6%

Table 2. WER breakdown for CHiME2 test set according
to the SNR levels for the baseline and full progressive nets
combined using the word-based LSTM combination.

bining independent DNNs and ProgNets on CHiME2 and
CHiME3 datasets.

For the CHiME2 experiments, combining independently
trained DNNs and ProgNets both performed better than the
single DNN baseline system, although the improvement of
combining the posteriors of independently trained DNNs at
the frame level is not significant. As Table 1 shows, for the
frame-level combination, ProgNets outperformed indepen-
dently trained DNNs by 0.2% and 0.3%. When the columns
of ProgNets increased from 3 to full, the WER deduction was
not significant. This may imply that useful information was
carried in the data of the closest SNR levels.

Table 2 shows the breakdown of WERs for CHiME2 test
set according to the SNR levels. As can be seen in the table,
in general the WER deduction is higher in more noisy data
than less noisy data. But for the -6 dB subset, the deduction
is not as significant as that of the -3 dB. This possibly could
be because the predecessor networks were all based on higher
SNR data.

For the experiments on the CHiME3 dataset, the best
performance was achieved by using 4-column ProgNets with
the word-level combination. As shown in Table 3, compared
with the DNN baseline trained with all noisy data, the WER
deduction is 1.1% for real noisy test set, and 0.9% for sim-
ulated noisy test set. Similar to the CHiME2 experiments,
ProgNets consistently outperformed independently trained
DNNs in both frame-level posterior fusion and word-level

Experiments Noise type WER
Baseline Real 18.9%

Simu 20.4%
Frame-avg Word-lstm

Indept. DNNs Real 18.6% 18.3%
Simu 20.4% 20.2%

ProgNets-full Real 18.4% 17.8%
Simu 20.0% 19.5%

Table 3. Experiment results for the CHiME3 dataset. The
row of ProgNets-full shows the results of the ProgNets with
4 columns corresponding to the 4 noise environments in
CHiME3.

combination.
For both CHiME2 and CHiME3 experiments, the multi-

stream WFST framework improves recognition performance
by combining different acoustic models at the word level. We
can see in the tables that the word-level combination outper-
formed the frame-level posterior fusion by at least 0.4% for
the CHiME2 dataset and 0.2% for the CHiME3 dataset. The
largest margin occurred in the real noisy test set, which is
0.6%. We expected the improvement at the word-level, be-
cause more frames were accumulated and more information
about the noise conditions can be used for combination.

6. CONCLUSIONS

In this paper, we propose the use of progressive neural
networks for multi-stream WFST combination in one-pass
decoding. We used the noisy speech data from CHiME2
and CHiME3 datasets. To take advantage of the ability of
ProgNets in transferring knowledge between different do-
mains or datasets, we sub-divided the data according to dif-
ferent noise conditions so that the trained models can share
the information about the noisy data. In addition, the word-
level combination in the multi-stream WFST framework
further helps improve the performance, as it can make use of
a longer range of acoustic information for the combination.
Combining the two techniques, we achieved a reasonable
improvement over the baseline.

For future work, we would like to experiment with the
ProgNets technique for different types of neural networks,
such as RNNs and CNNs. In the experiments we reported
in this paper, all the columns of the ProgNets shared the
same neural network structure, but the state-of-the-art speech
recognition systems combine different types of neural net-
work acoustic models[12]. Since different types of models
can capture different characteristics of data to allow the mod-
els to compensate for each other, it is worth exploring the
possibility of using progressive neural networks or other
knowledge transferring techniques for different model struc-
tures in noisy speech recognition and system combination.
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