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ABSTRACT

This paper presents a modified loss function for training con-
nectionist temporal classification (CTC)-based acoustic mod-
els. CTC-based acoustic models have been studied as alter-
natives to conventional hidden Markov models (HMMs), but
have often shown worse performance than conventional deep
neural network (DNN)-HMM hybrid models. In this paper,
we attempt to identify the primary factor preventing CTC-
based models from achieving their full potential, and hypoth-
esize this constraint lies in the ambiguity in the identification
boundaries among unit-level labels (phonemes or characters).
In accordance with this hypothesis, we propose a modified
CTC loss function using an ambiguity penalty. This penalty is
defined by the conditional entropy and works to increase the
separation metrics among unit-level labels. We evaluate the
proposed method on the WSJ and CHiME4 tasks, and demon-
strate that our modification improves the word error rate com-
pared with that of the conventional CTC-based model when
the training dataset is small.

Index Terms— Speech recognition, connectionist tempo-
ral classification, loss function, conditional entropy, acoustic
model

1. INTRODUCTION

Deep neural networks (DNNs) have enabled significant im-
provements in the accuracy of automatic speech recognition
(ASR) and have replaced Gaussian mixture models (GMMs)
as the de facto standard [1, 2, 3]. One reason for this improved
accuracy is that DNNs do not depend on the strong assump-
tions used in GMMs (i.e., assumptions based on Gaussian dis-
tributions), thus enabling more flexible acoustic models to be
learned. However, most DNN-based acoustic models are not
completely free of conventional assumptions, because they
are often applied with conventional hidden Markov models
(HMMs) (i.e., DNN-HMM hybrids), which assume that the
observations are independent. Therefore, it is expected that
the ASR performance could be further improved if more flex-
ible acoustic models were trained without these assumptions.

As alternatives to DNN-HMMs, acoustic models based
on the connectionist temporal classification (CTC) [4] have
been developed. CTC makes it possible to convert a sequence

of the network outputs of each frame to a sequence of labels
without using HMMs by introducing the deletion of repeated
labels and the insertion of blank labels (i.e., “no label”). Ad-
ditionally, whereas training DNN-HMMs requires the train-
ing data to be pre-segmented for each label (i.e., alignments),
which is usually estimated using HMMs, CTC-based acoustic
models are trained using a forward–backward algorithm, and
do not require any alignment information. This means that the
CTC framework does not require the HMM for either train-
ing or decoding. Large vocabulary continuous speech recog-
nition (LVCSR) using CTC-based models instead of DNN-
HMMs has been studied [5, 6, 7, 8, 9, 10, 11]. CTC has also
been applied in language-free end-to-end speech recognition
systems, which recognize speech without any language in-
formation such as a lexicon or language model [5, 12, 13].
However, in previous research, CTC-based models have of-
ten shown lower ASR accuracies than DNN-HMMs when
both are integrated with language models [5, 8, 10, 11]. In
an experimental study, Kanda et al. [11] showed that CTC-
based models require a large amount of training data to ob-
tain higher ASR accuracy than DNN-HMMs. Pundak et al.
[14] also experimentally showed the sensitivity of CTC-based
models to the amount of training data. These observations
indicate that CTC-based models have the potential to outper-
form DNN-HMMs; however, they perform below their full
potential unless they have a large amount of training data.
The goal of our research is to explain the primary factor pre-
venting CTC-based models from achieving their full poten-
tial, and improve their performance with limited training data
(i.e., data-efficiency).

For the purpose of our research, this paper focuses on
the posterior probabilities of labels obtained from CTC-based
models (i.e., network outputs of each frame). From our exper-
iments, we have found that the posterior probabilities related
to some labels are close to each other when there were few
training data. This means that the identification boundaries
among these labels are ambiguous in the CTC-based model.
Thus, we hypothesize that one of the factors restricting the
CTC-based model is that, whereas the CTC framework trains
the model such that the likelihood of the correct sentence is
maximized, the identification boundaries among unit-level la-
bels (i.e., phonemes or characters) are not clear when there
are insufficient training data. Therefore, we modify the loss
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function for training CTC-based acoustic models so that we
not only maximize the likelihood of the correct sentence, but
also minimize the ambiguity among unit-level labels. In our
proposed method, we add an ambiguity penalty (AP), defined
by the conditional entropy, to the original CTC loss function.
We evaluate the performance of the proposed method on the
Wall Street Journal (WSJ) and CHiME4 tasks, and demon-
strate that our proposed method improves the word error rate
(WER) compared with that of the conventional CTC-based
model when the training dataset is small.

2. CONNECTIONIST TEMPORAL
CLASSIFICATION

In this section, we describe the conventional CTC framework
[4]. For general speech recognition, we need to map a se-
quence of the label probabilities calculated for each frame
into a label sequence of length equal to or less than the num-
ber of frames. CTC makes it possible to convert a sequence
of RNN outputs for each frame to a label sequence by in-
troducing the deletion of repeated labels and the insertion of
blank labels (i.e., “no label”). For example, when a seven-
frame observation is assigned as “π = {a − abba−}” or
“π = {a − −abaa}” with labels modified by adding the
blank label ‘-’ (we call the assignment path π), both paths are
mapped to an identical label sequence l = B(π) = B({a −
abba−|a−−abaa}) =“aaba”, where B is the mapping func-
tion. Thus, because there are multiple possible paths mapped
to an identical label sequence, the conditional probability of
the label sequence l given the observation sequence x is de-
fined as the sum of the probabilities of all possible corre-
sponding paths:

Pr(l|x) =
∑

π∈B−1(l)

Pr(π|x). (1)

The probability of the modified label πt at frame t is modeled
with an RNN. Therefore, the conditional probability of path
π is calculated as follows:

Pr(π|x) =
T∏
t

ytπt
, (2)

where ytπt
denotes the output of the RNN node corresponding

to modified label πt at frame t, and T denotes the number of
frames.

The CTC-based acoustic model is trained by maximizing
the likelihood, that is, Eq. (1), for all training data. Prac-
tically, because the training target is the RNN, the aim is to
minimize the loss function defined as

LCTC = −
∑

(x,l)∈Z

lnPr(l|x), (3)

where Z denotes the training data-set. The conditional prob-
ability is efficiently computed using the forward-backward

algorithm. After computing the conditional probability,
the derivatives, that is, ∂LCTC

∂yt
k

and ∂LCTC

∂ut
k

(where ytk =

exp(ut
k)∑

k′ exp(ut
k′ )

), are computed and the RNN is trained using
backpropagation (for more details, see [4]).

3. PROPOSED METHOD

3.1. Focal point: posterior probabilities of labels

We focus on the posterior probabilities of labels obtained
from CTC-based models (i.e., network outputs of each
frame). The top figure in Figure 1 shows the network outputs
of a training sample for each frame that correspond to some
phoneme labels. As shown in this figure, the posterior prob-
abilities of multiple labels (circled by red dashes) are close
to each other, and it is relatively difficult to identify them.
This indicates that, at least in these frames, the identification
boundaries among the labels are ambiguous. Thus, we hy-
pothesize that this ambiguity among unit-level labels is one
of the factors restricting the CTC-based model. To verify
our hypothesis, we attempt to train the CTC-based model
to not only maximize the likelihood of the correct sentence,
but also minimize the unit-level ambiguity by modifying the
loss function. We then confirm whether our modification
improves the ASR accuracy.

3.2. CTC loss function with an AP

As mentioned in Section 3.1, we modify the CTC loss func-
tion by adding a penalty based on the unit-level ambiguity
(ambiguity penalty; AP). The proposed method uses the con-
ditional entropy to define the AP. The minimization of condi-
tional entropy is often used to increase discriminative ability
in clustering tasks [15, 16, 17] and the training of generative
models [18, 19]. In our proposed method, the conditional en-
tropy is defined as the expectation of the log conditional prob-
ability of a modified label k given an observation xt at frame
t:

Entropy(k|xt) = −
∑
k

Pr(k|xt) lnPr(k|xt). (4)

Lower values of the conditional entropy mean that xt tends
to be recognized as a specific label more clearly. Using the
conditional entropy, we define the AP as

LAP = −
∑
x∈Z

Tx∑
t=1

∑
k

Pr(k|xt) lnPr(k|xt), (5)

where Tx denotes the number of frames of a training data
sample x = {x1, . . . , xTx}. Note that unlike using cross en-
tropy, Eq. (5) does not require the correct label, that is, frame-
level alignment. The conditional probability of a modified la-
bel k is defined as the output of the RNN node corresponding
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to k:

Pr(k|xt) = ytk. (6)

Then, we compute the derivatives of LAP . The derivative
with respect to the network output ytk is derived as follows:

∂LAP

∂ytk
= − ∂

∂ytk

∑
x∈Z

Tx∑
t=1

∑
k

ytk ln y
t
k

= −(ln ytk + 1). (7)

The derivative with respect to the unnormalized output ut
k,

where ytk =
exp(ut

k)∑
k′ exp(ut

k′ )
, is derived as follows:

∂LAP

∂ut
k

=
∑
k′

∂LAP

∂ytk′

∂ytk′

∂ut
k

= −
∑
k′

(ln ytk′ + 1)(ytk′δk′,k − ytk′ytk)

= −
(
ytk(ln y

t
k + 1)− ytk

∑
k′

ytk′(ln ytk′ + 1)
)
, (8)

where δk′,k is Kronecker’s delta.
The proposed CTC loss function is defined as the inter-

polation between the conventional CTC loss function and the
AP:

LCTC+AP = (1− λ)LCTC + λLAP , (9)

where λ(0 ≤ λ ≤ 1) denotes a tunable weighting parameter.

4. EXPERIMENTS

4.1. Experimental conditions

To evaluate the CTC-based acoustic models, we used the
EESEN software [8], and implemented our proposed loss
function in EESEN. We set the training conditions according
to the approach in [8], written by the developers of the soft-
ware, as follows. We used a bi-directional long short-term
memory [20, 21] with four hidden layers and 320 memory
cells in each hidden layer for building a CTC network. We
extracted 40-dimensional mel-filterbank features with their
first- and second-order derivatives (FBANK+∆+∆∆, 120 di-
mensions in total) as acoustic features, and defined the target
labels to include 69 phonemes, two noise marks, and a blank
(72 labels in total). The model parameters were optimized
using stochastic gradient descent (SGD) with a momentum
of 0.9, and the learning rate was initially set to 0.00004.
For decoding, the EESEN framework integrated the CTC-
based acoustic model, lexicon, and language model using
the weighted finite-state transducer [22, 23]. The decoding
framework is detailed in [8].

To evaluate the DNN-HMMs, we used the Kaldi ASR
toolkit [24]. We set the training conditions following standard

Kaldi recipe, although we used the same base acoustic fea-
tures as for training the CTC-based model: We extracted 120-
dimensional FBANK+∆+∆∆ features and spliced 11 neigh-
boring frames for the inputs of the DNN (a total of 1,320
nodes in the input layer). The DNN had four hidden layers
and 1,024 nodes in each hidden layer. The model parameters
were optimized under the cross-entropy (CE) criterion (CE-
DNN-HMM) using the standard SGD without momentum.

The experiments were conducted on the WSJ and CHiME4
tasks. For the WSJ task, we performed the experiments
on two types of training dataset: (1) using only “WSJ0
(LDC93S6B)” (15 hours, known as “train si84” in the Kaldi
recipe); and (2) using “WSJ0” and “WSJ1 (LDC94S13B)”
(81 hours, known as “train si284” in the Kaldi recipe). For
both experiments, we used 95% of the training data for learn-
ing the model parameters and the remaining 5% for vali-
dation, and we used the “dev93” and “eval92” datasets for
evaluation. Note that we did not use dev93 as the validation
set, unlike many other studies. We used the CMU dictionary
as the lexicon and the 20,000-word vocabulary WSJ pruned
language model, known as “lm tgpr” in the Kaldi recipe,
as the language model. The experimental conditions using
train si284 were the same as those in [8].

The CHiME4 corpus [25] was recorded in noisy environ-
ments, such as a cafe, street junction, public transport, and
pedestrian area. We used this corpus to evaluate the effect
of noisy training data on our proposed method. We used
the “tr05 multi noisy” (18 hours) dataset to learn the model
parameters, “dt05 multi noisy” (5.6 hours) dataset for valida-
tion, and “dt05 real isolated 1ch track” and “et05 real isolat-
ed 1ch track” datasets for evaluation. We used the CMU
dictionary as the lexicon and the 5,000-word vocabulary WSJ
pruned language model, known as “lm tgpr 5k” in the Kaldi
recipe.

4.2. Results

Table 1 presents the WERs for each task. “CTC-AP” denotes
our proposed method (i.e., CTC with AP). On the WSJ task
using train si84 (15 hours), increasing the weight of the AP λ
to 0.050 improved the WERs for the conventional CTC-based
model (this is equivalent to the case of λ = 0.000). However,
increasing λ above 0.050 worsened the WERs. This tendency
was observed for both dev93 and eval92.

Figure 1 shows the posterior label probabilities of the
CTC models trained using train si84. The top figure shows
the probabilities on the conventional CTC model and the
bottom figure shows those on the CTC-AP model with
λ = 0.050. As described in Section 3.1, for the conven-
tional CTC model, the posterior probabilities of multiple
labels (circled by red dashes) were close to each other, and it
was relatively difficult to identify them. In contrast, for the
CTC-AP model, those probabilities converged to the correct
labels. This indicates that our proposed method clarified the
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Table 1. Word error rates (WERs) for each task.

Acoustic Model WER
WSJ–train si84 (15hrs) dev93 eval92

CTC (baseline) 20.18 13.11
CTC-AP (λ = 0.010) 18.74 12.95
CTC-AP (λ = 0.025) 18.42 11.70
CTC-AP (λ = 0.050) 18.03 11.41
CTC-AP (λ = 0.075) 18.86 12.53
CTC-AP (λ = 0.100) 21.59 13.75

CE-DNN-HMM 13.69 8.36
WSJ–train si284 (81hrs) dev93 eval92

CTC [8] 11.39 7.87
CTC (our work, baseline) 11.70 8.05

CTC-AP (λ = 0.010) 11.71 7.83
CTC-AP (λ = 0.025) 11.72 7.92
CTC-AP (λ = 0.050) 11.93 7.83
CTC-AP (λ = 0.075) 12.19 8.12
CTC-AP (λ = 0.100) 12.67 8.38

CE-DNN-HMM 11.03 7.02
CHiME4-tr05 multi noisy (18hrs)

+ dt05 multi noisy (5.6hrs) dt05 real et05 real
CTC (baseline) 29.12 45.50

CTC-AP (λ = 0.010) 28.83 44.85
CTC-AP (λ = 0.025) 28.47 44.38
CTC-AP (λ = 0.050) 28.03 43.59
CTC-AP (λ = 0.075) 31.58 47.44
CTC-AP (λ = 0.100) 33.48 49.81

CE-DNN-HMM 22.45 38.86

unit-level identification boundaries on a CTC-based model,
and that clarification could improve the WERs of the CTC-
based model. Conversely, this result confirms our hypothesis
described in Section 3.1.

As described above, we have confirmed that our proposed
method improves the WERs of the conventional CTC-based
model when train si84 is used as the training set. However, as
shown in Table 1, our proposed method did not produce sig-
nificant improvement when train si284 (80 hours) was used.
These results indicate that our proposed method has a positive
effect with relatively few training data.

On the CHiME4 task, as for the experiments on the WSJ-
train si84 training set, our proposed method improves the
WERs compared with the conventional CTC-based model.
Additionally, the WER tendency when increasing λ is the
same as for the train si84 task. Because the size of the train-
ing set for the CHiME4 task is approximately as small as
train si84 and the training set includes noisy data, these re-
sults indicate that the proposed method has a positive effect
with relatively few training data, even when the training data
include noisy speech.

Baseline CTC

CTC-AP (� � 0.050)

Fig. 1. Network outputs (i.e., posterior probabilities) of
some phoneme labels on a training data sample uttered
“COULD BE. PERIOD.” The correct phoneme label se-
quence is “K/UH1/D/B/IY1/P/IH1/R/IY0/AH0/D.” “BLK”
denotes the blank label. The circled areas explain that mul-
tiple labels are relatively difficult to be identified in these
frames.

For all tasks, the CE-DNN-HMMs showed the best
WERs, as reported in previous studies [5, 8, 11], even though
our proposed method improves the WERs of CTC-based
models.

5. CONCLUSION

In this paper, we attempted to identify the primary factor
that prevents CTC-based models from achieving their full
potential when there are insufficient training data. To verify
our hypothesis that one of the factors lies in the ambiguity
among unit-level labels, we proposed a modified CTC loss
function with a unit-level ambiguity penalty. In experiments
using multiple corpora, our proposed modification did not
outperform conventional CE-DNN-HMMs, but did improve
the WERs of conventional CTC-based models when there
were few training data. This means that the proposed method
did not realize the full potential of CTC-based models, but
did improve their data-efficiency. From these results, we con-
clude that unit-level ambiguity is not the primary factor, but
is one of the sub-factors preventing CTC-based models from
achieving their full potential.

Because our method is effective in scenarios with rela-
tively few training data, it might be helpful for ASR of low
resource languages. In future work, we will evaluate our pro-
posed method in these tasks, and continue efforts to achieve
the full potential of CTC-based models.
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