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ABSTRACT

This paper presents methods to accelerate recurrent neural network
based language models (RNNLMs) for online speech recognition
systems. Firstly, a lossy compression of the past hidden layer out-
puts (history vector) with caching is introduced in order to reduce
the number of LM queries. Next, RNNLM computations are de-
ployed in a CPU-GPU hybrid manner, which computes each layer
of the model on a more advantageous platform. The added overhead
by data exchanges between CPU and GPU is compensated through
a frame-wise batching strategy. The performance of the proposed
methods evaluated on LibriSpeech1 test sets indicates that the re-
duction in history vector precision improves the average recognition
speed by 1.23 times with minimum degradation in accuracy. On the
other hand, the CPU-GPU hybrid parallelization enables RNNLM
based real-time recognition with a four times improvement in speed.

Index Terms— Online speech recognition, language model, re-
current neural network, graphic processing unit

1. INTRODUCTION

A language model (LM) computes the likelihood of a given sentence
and is used to improve the accuracy of an automatic speech recogni-
tion (ASR) system. Recent research has focused on neural network
(NN) based LMs [1] because of their outstanding performances in
generalizing from sparse data, which traditional n-gram based LMs
could not do. In particular, recurrent neural network based LMs
(RNNLMs) [2] do not even require Markov assumptions as they can
model word histories of variable-length, and these virtues of them
have helped improve the performance of many ASR systems [3, 4].
However, to our knowledge, they are not yet actively adopted in real-
time ASR systems due to their high computational complexities.

Several attempts have been made to utilize RNNLMs for on-
line decoding in real-time ASR systems [5, 6, 7] However, they ei-
ther simulate only some aspects of RNNLMs into the traditional ar-
chitectures [5, 6], or perform a 2-pass decoding [7] which innately
could not be applied before the end of the utterance was reached.
There have also been attempts to apply RNNLM directly to on-
line ASR without approximation by eliminating redundant compu-
tations [8, 9, 10]. In our previous research [9], we were successful in
applying moderate size RNNLMs directly to CPU-GPU hybrid on-
line ASR systems with a cache strategy [10]. However, in order to
apply it to a more complex task with bigger RNNLMs, we needed to
find a way to accelerate it further.

Recent studies indicate that one can reduce the number of
distinct RNN computations by treating similar past hidden layer
outputs, also referred to as history vectors, as same [11], and that

1http://www.openslr.org/12/

RNNLMs can be accelerated with GPU parallelization [12]. In this
paper, we attempt two different approaches in order to achieve real-
time performance in a large RNNLM based ASR system. Firstly, a
lossy compression is applied to the cache of the history vector. The
precision of the vectors can be controlled by either rounding up with
a smaller number of significant digits or at an extreme, by storing
only the sign of each element. Next, we propose GPU paralleliza-
tion of RNNLM computations, but only on selected layers. Instead
of performing all RNNLM computations on the same platform,
compute-intensive parts of the model are computed on GPUs, and
the parts that need to utilize a large memory are calculated on CPUs.
This method inherently increases the overhead of data transfer be-
tween CPUs and GPUs. This is handled by coordinating a batch
transfer method that reduces the number of communications and the
size of the data blocks at the same time in the hybrid ASR systems.

The paper is organized as follows. The architecture of our base-
line ASR system is explained in Section 2. The lossy compression
method of the history vectors is explained in Section 3. Section 4
explains how RNNLM rescoring is accelerated with CPU-GPU par-
allelization. Section 5 evaluates performance improvements of the
proposed methods, followed by conclusion in Section 6.

2. ARCHITECTURE OF OUR BASELINE CPU-GPU
HYBRID RNNLM RESCORING

In the CPU-GPU hybrid ASR system [13], the weighted finite state
transducer (WFST) is composed of four layers each representing
an acoustic model (AM), a context model, a pronunciation model,
and an LM. WFSTs output word hypotheses when they reach word
boundaries during frame-synchronous Viterbi searches and the hy-
potheses can be rescored by a separately stored RNNLM. However,
in order to speed up on-the-fly rescoring based on RNNLMs, we
needed to reduce redundant computations as much as possible. In
this section, we briefly outline the architecture of our baseline CPU-
GPU hybrid RNNLM rescoring proposed in [9]. The main high-
lights of our baseline architecture are the use of gated recurrent unit
(GRU) [14] based RNNLM, noise contrastive estimation (NCE) [15]
at the output layer, n-gram based maximum entropy (MaxEnt) by-
pass [16] from input to output layers, and cache based on-the-fly
rescoring.

2.1. GRU based RNN

We employed a GRU which is a type of gated RNNs [14]. The GRU
is a mechanism designed to prevent vanishing gradient problems re-
lated to long-term dependencies over time by using reset gates and
update gates. For calculating a output vector of a GRU hidden layer,
a total of six weight matrices and three bias vectors need to be loaded
into memory since for each gate and a candidate activation, two
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Fig. 1. On-the-fly rescoring with the LM query cache (baseline).

weight matrices and one bias vector are required. Thus the memory
usage can go up to several megabytes even if the weights are stored
in a single precision floating-point format. The computational com-
plexities of GRU computations are O(H × H) for a hidden layer
of size H . This is a highly compute-intensive task considering that
the number of unique LM queries in decoding an utterance can reach
several hundreds of thousands.

2.2. Noise contrastive estimation

In order to guarantee that the scores calculated at the output layer
of an RNNLM are valid probabilities, they need to be normalized
over different word sequences. The normalization is a highly com-
putationally intensive task considering the vocabulary size V can
reach millions. In order to address this, we employ an NCE at the
output layer [15]. NCE is a sampling-based approximation method
that treats partition functions as separate parameters and learns them
by non-linear logistic regression. The variances of these partition
functions estimated by NCE are often limited to small values [17],
allowing us to use the unnormalized scores without significant re-
duction in the recognition accuracy. Even though the only required
computations are inner products between the GRU outputs and NCE
weights corresponding to the current word, the NCE weight matrix
of size H × V need to be loaded into memory.

2.3. Maximum Entropy

The second strategy to reduce computation in our GRU based
RNNLM is to use an n-gram based MaxEnt bypass connections
from input to output layers [16]. The MaxEnt scheme helps in main-
taining a relatively small size for the hidden layer without significant
reduction in recognition accuracy. The two types of parallel models,
the main network consisting of GRUs and NCE, and the other with
MaxEnt bypass connections, operate as an ensemble model and
can improve the overall recognition accuracy. In order to reduce
the computational overhead because of the bypass connections, we
implemented a hash-based MaxEnt. This method requires the load-
ing of a large hash table proportional to the number of n-grams, to
retrieve a probability for the given n-gram in constant time.

Fig. 2. Proposed on-the-fly rescoring with the cache of quantized
history vectors.

2.4. On-the-fly rescoring with cache

The process flow diagram of our baseline CPU-GPU hybrid RNNLM
rescoring is shown in Figure 1. The LM queries with same history
as well as following words are deduplicated by applying a cache
strategy at the start of the rescoring procedure [9]. After the dedupli-
cation, the embedding vectors corresponding to indices are retrieved
by using an “Index Table”. The RNNLM computations are then
performed with appropriate values in CPU memory. The results of
the calculations are converted to indices, cached, and returned to
graph traversals.

3. QUANTIZATION OF HISTORY VECTORS

The cache-based strategy for deduplicating LM queries dramatically
accelerated our baseline RNNLM rescoring with a cache hit ratio
of around 89% and more than 10 times reduction in computation
time [9]. However, there is still room for improvement by extending
this caching strategy to the outputs of GRU hidden layers.

The current GRU hidden layer outputs computed based on the
previous GRU hidden layer outputs (history vectors) could be shared
between similar LM queries. Therefore, in order to reuse the pre-
computed history vectors, we created another cache for that vectors
just before computing RNNLMs as shown in Figure 2. The key of
the cache is the GRU input which is a pair of a word embedding and
a history vector, and the value of the cache is a GRU hidden layer
output corresponding to that input. The number of unique computa-
tions is further reduced by assuming that close history vectors would
result in similar GRU hidden layer outputs, with negligible effect on
the overall ASR results. Euclidean distance would be an easy way to
measure the similarity [11], but it would still require a lot of compu-
tations that can slow down the whole rescoring process. Instead, we
propose to quantize the history vectors by controlling the precision
of history vector itself by rounding up to a specified decimal point.
We also consider an extreme case, in which we store only the signs
of each element, as it would still capture some of the latent meanings
which the hidden layers represent.

Table 1 shows the possible reduction of computations for a
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Table 1. Redundancy rates of quantized history vectors.
Precision Count Redundancy rate
(baseline) 103,904 0.0 %
round-2 102,776 1.09 %
round-1 102,776 1.09 %

sign 88,749 14.59 %

four-second utterance. (Note that each element of the history vector
ranges from -1 to 1.) The term “Precision” refers to the quantization
of history vectors to a specified decimal place. After the initial
deduplication, in our baseline system, we have 103,904 unique LM
queries as can be observed from the first row of Table 1. The “round-
2” row shows that only 1.09% of the computations can be reduced
by caching the history vectors rounded to the second decimal place.
Rounding off the history vectors to the first decimal place shows
that there is no further redundancy. However, as shown in the last
row of Table 1, an extreme case of quantization where only signs
of each element are stored, we were able to reduce 14.59% of the
computations. This relatively huge reduction may affect the accu-
racy of RNNLM results to some extent since after the extreme sign
quantization there are still 2256 possible unique history vectors for a
hidden layer of size H = 256, but it is worthy to evaluate its effect
on ASR systems.

4. CPU-GPU HYBRID DEPLOYMENT OF RNNLM
COMPUTATION

As described in Section 2, the proposed RNNLM model cannot be
readily deployed on a GPU processor due to its large memory re-
quirement. The word embedding step at the input layer requires
space proportional to the size of vocabulary, and the MaxEnt step
at the output layer need to maintain a large hash table that can store
the n-grams and the corresponding scores. Also, the NCE step at the
output layer requires loading of an NCE weight matrix proportional
to the size of vocabulary. On the other hand, the hidden layer oc-
cupies only a fixed amount of memory but needs a large number of
computations instead.

Table 2. Operation times for each RNNLM computation step in
seconds.

Processor Data transfer Hidden Output
Unit Count Time Layer Layer

CPU - - - 6.23 0.04
GPU LM Query 102,172 5.94 2.15 0.06
GPU Frame 518 0.60 2.26 0.03

The first row of Table 2 shows a profiling result of an RNNLM
computation with a single layer of 128 GRU nodes based on a three-
second utterance. As is expected, the hidden layer takes 99% of the
overall computation, which we aim to reduce in this section. The
high computational rates of neural networks are easily accelerated
by utilization of GPUs, but their high memory requirements for word
embeddings and MaxEnts prevent us from doing so. Therefore, we
deploy only the hidden layer part of the computation on the GPUs
and keep the input embedding and output layer computations on the
CPU side, as shown in Figure 3. As can be observed from the second
row of Table 2, the hybrid deployment reduces the computation time
for the hidden layer to one-third of what was done on CPU alone.

Fig. 3. Proposed GPU based RNNLM rescoring with frame-wise
batch data transfer.

However, this method also introduces a setback. Because only
the middle layer of the RNNLM computations was deployed on the
GPU side, and its surrounding layers are computed on CPUs, the
information needs to be shared across the two heterogeneous pro-
cessor units frequently. As the number of data exchanges increases,
the decoding speed of the hybrid ASR system inevitably decreases.
The second row of Table 2 also shows that there have been more
than a hundred thousand data exchanges during an utterance, which
delayed the overall computation by 5.94 seconds, which is twice as
long as the original utterance.

The frequency of data transfers between CPUs and GPUs affects
the decoding speed more critically than the data size in each transfer.
Therefore, we propose a method in which we reduce the number of
data copies between CPUs and GPUs by concatenating the needed
information to one block per frame. During the batching step, the
history vectors and their next word embeddings that are emitted for
each frame are stored in a consecutive CPU memory block, and the
whole data block is transferred to GPU memory at once. The GRU
outputs from the GPU are also copied back to the output layer com-
putation in one data block. This effect can be observed from the last
row of Table 2, in which the data transfer time is reduced to 10% of
the original. In addition, this approach still works in multi-GPU en-
vironments without additional operations by evenly distributing the
block to GPUs since the hidden layer calculations for each segment
of the CPU memory block are not sequentially related to each other.

5. EXPERIMENTS

5.1. Experimental setup

The LMs in our experiments were trained on the training corpus of
LibriSpeech [18]. To compare the performance with n-grams, “4-
gram full LM” in LibriSpeech was used. Both vanilla-RNNLMs and
GRU-RNNLMs consisted of a single hidden layer and 4-gram based
MaxEnt connections. The vocabularies used for all RNNLMs were
the same as “4-gram full LM” (V = 200, 000). A bi-directional re-
current deep neural network (RDNN) based AM with three hidden
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Table 3. Performances on LibriSpeech’s test sets; all evaluations were performed with same decoding options.

LM Processor Rescoring Precision dev-clean test-clean dev-other test-other
threads WER RTF WER RTF WER RTF WER RTF

4-gram full CPU 4 - 4.28 0.18 4.95 0.33 11.92 0.54 11.87 0.26

CPU 4

(baseline) 4.05 2.16 4.69 2.19 11.70 3.58 11.47 3.37
round-2 4.06 1.85 4.69 1.89 11.69 2.91 11.49 2.85
round-1 4.05 1.82 4.69 1.87 11.69 2.95 11.48 2.89

GRU-RNNLM sign 4.06 1.79 4.69 1.80 11.69 2.82 11.47 2.75
(H = 256)

GPU

1

-

4.05 1.10 4.69 1.08 11.70 1.94 11.49 2.29
2 4.06 0.71 4.69 0.70 11.70 1.24 11.47 1.20
3 4.05 0.58 4.68 0.63 11.69 0.98 11.47 0.97
4 4.05 0.52 4.69 0.52 11.70 0.88 11.47 0.94

long short term memory (LSTM) layers (500 nodes for each layer),
and a softmax output layer was trained using about 7,600 hours of
the fully transcribed in-house English speech data mostly consist-
ing of voice commands and dialogs. WFSTs were compiled with
2-gram LMs, and all the epsilon transitions were removed so that
computations on GPUs could be optimized.

The hardware specification for the evaluations was Intel Xeon
E5-2680 with 12 physical CPU cores and four Nvidia Tesla K80
GPUs equipped with 12 GB memory. We used CUDA for GPU par-
allelization. CUBLAS, which is a linear algebra library of CUDA,
was used for matrix multiplications and kernel functions were im-
plemented for relatively simple operations such as element-wise op-
erations. For RNNLM computations on CPUs such as output layer
computations, we used EIGEN which is a C++ based linear algebra
library.

5.2. Results

Fig. 4. Perplexities depending on LM types.

In our experiments, LibriSpeech’s development and test cases
were used for evaluations. The performance of different LMs mea-
sured in terms of perplexity is shown in Figure 4. The term “other”
in the evaluation cases means the speech data sets were recorded
in noisy environments. As can be seen in Figure 4, the vanilla-
RNNLM of size 128 showed the worst accuracies over all the sets
and was even worse than that of the 4-gram LM. The accuracy of
vanilla-RNNLM improved dramatically for a hidden layer size of
256 and showed the lowest perplexities, but still worse than a 128-
size GRU-RNNLM. Perplexities of GRU-RNNLMs were dropped
by 7.81, 10.10, and 9.75 absolute (averaged over all four cases) for
model sizes of 128, 256, and 512, respectively, as compared to the

perplexity of the 4-gram LM. In all tasks except for “dev-other,” the
GRU-RNNLM size of 256 showed the lowest LM perplexities.

Table 3 shows the word error rate (WER) and the real-time factor
(RTF) for the proposed methods for accelerating the online RNNLM
rescoring. All decoding options otherwise mentioned in Table 3 are
same for all the methods being compared. The meanings of values
in the column “Precision” are the same as Table 1. Regarding recog-
nition accuracies, the average WER of the baseline system was im-
proved by 3.39% relatively than that of the 4-gram LM based system
as can be observed from the first two rows of Table 3. As expected in
Section 3, caching quantized history vectors rounded off in the first
and the second decimal points did not show noticeable improvement
in recognition speed compared to the baseline system. However, the
proposed quantization strategy of caching only signs of the history
vectors was 1.23 times faster compared to the baseline system with-
out any accuracy degradations.

As shown in the fifth and sixth rows of Table 3, with the pro-
posed GPU parallelization method, even one thread was 1.43 times
faster on an average than the fastest CPU based system (sign). The
recognition speed improves further with the use of multiple GPUs.
In particular, when the number of GPUs increased to two, the speed
was significantly improved, which was 1.61 times faster than a sin-
gle GPU-based system. When three GPUs were utilized, we attained
real-time speech recognition over all the test cases. Finally, the
RNNLM-based ASR system with four GPUs has shown the fastest
average recognition speed of 0.72 RTF over all four test cases. It was
three times faster than the fastest CPU-based system and four times
faster than the baseline system.

6. CONCLUSION

We devised a faster RNNLM based on-the-fly rescoring on both
CPU and GPU platforms by introducing a lossy compression strat-
egy of history vectors and the novel hybrid parallelization method.
As cache hit ratios got higher by lowering decimal precisions of the
vectors, speech recognition was speeded up by 1.23 times. Although
it was not a significant improvement, the fact that recognition rates
were not affected even if each dimension of the history vectors was
stored by one bit representing the sign seemed to provide a clue to the
efficient compression way of embedding vectors while minimizing
the loss of their information. Finally, with the CPU-GPU hybrid par-
allelization method, the decoding speed over all the cases has fallen
within real-time.
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