
PYKALDI: A PYTHON WRAPPER FOR KALDI

Doğan Can, Victor R. Martinez, Pavlos Papadopoulos, Shrikanth S. Narayanan

Signal Analysis and Interpretation Lab
University of Southern California

Los Angeles, CA, USA

ABSTRACT

We present PyKaldi, a free and open-source Python wrapper
for the widely-used Kaldi speech recognition toolkit. PyKaldi
is more than a collection of Python bindings into Kaldi li-
braries. It is an extensible scripting layer that allows users to
work with Kaldi and OpenFst types interactively in Python. It
tightly integrates Kaldi vector and matrix types with NumPy
arrays. We believe PyKaldi will significantly improve the user
experience and simplify the integration of Kaldi into Python
workflows. PyKaldi comes with extensive documentation and
tests. It is released under the Apache License v2.0 with sup-
port for both Python 2.7 and 3.5+.

Index Terms— Speech Recognition, Kaldi, OpenFst,
Python

1. INTRODUCTION

Kaldi [1] is a free and open source toolkit for speech recogni-
tion. It consists of modern, flexible, general-purpose libraries
and executables written in C++ along with a large collection
of example scripts for building systems. Since its release in
2011, it has quickly grown to be an indispensable tool for
conducting speech research and building speech enabled ap-
plications. Kaldi’s success should come as no surprise. It has
an open license, extensive documentation, tested recipes for
building state-of-the-art systems, a large number of contribu-
tors from all over the world, a dedicated group of maintain-
ers, and maybe most importantly a well-designed codebase
that is easy to understand, modify and extend. Users typi-
cally interact with Kaldi either by running its highly modu-
lar and composable command-line programs manually inside
a UNIX shell or by writing scripts that run these programs.
Any functionality that is not exposed by one of the myriad
command-line Kaldi programs can be accessed via the C++
application programming interface (API). While this interac-
tion scheme is highly effective, it does not fully address the
needs of researchers and developers who would like to use
Kaldi in programming languages other than C++.

Thanks to NSF and DARPA for funding. VRM is partially supported
by Mexican Council of Science and Technology (CONACyT).

Python is a general-purpose dynamic programming lan-
guage that is immensely popular in the scientific computing
community [2–10]. It has a simple syntax, an extensive stan-
dard library, and a mature ecosystem of high quality third-
party packages for almost any task including scientific com-
puting1,2 and machine learning3,4,5,6. It comes with one of the
best environments for interactive exploration7, data process-
ing8, and visualization9. Also, the reference CPython imple-
mentation exposes a C extension API for implementing new
built-in object types and calling into C libraries which can be
used to great effect to offload performance critical sections
of code to C/C++. For all of these reasons and more, Python
bindings for Kaldi libraries is one of the most sought after fea-
tures among Kaldi users. There exist a number of open source
packages10,11,12,13,14 aiming to bridge the gap between Kaldi
and Python, however all of them are fairly limited in scope.

In this paper, we present PyKaldi15, a free and open
source scripting layer (see Figure 1) for Kaldi, that pro-
vides a near-complete coverage of Kaldi’s C++ library API
in Python. PyKaldi is more than a collection of bindings
into Kaldi libraries. It provides first class support for Kaldi
and OpenFst [11] types to make life easy for the Python
users when working with Kaldi. These types can be easily
constructed, manipulated, and displayed inside interactive
Python interpreters such as IPython [6]. PyKaldi vector
and matrix types can be seamlessly converted to NumPy ar-
rays [5] and vice versa by sharing the underlying memory
buffers. PyKaldi finite-state transducer (FST) types, includ-
ing Kaldi style lattices, provide an API similar to the one

1http://www.numpy.org
2https://www.scipy.org
3https://github.com/fchollet/keras
4https://github.com/pytorch/pytorch
5http://scikit-learn.org
6https://www.tensorflow.org
7https://ipython.org
8http://pandas.pydata.org
9http://matplotlib.org

10https://github.com/janchorowski/kaldi-python
11https://github.com/UFAL-DSG/pykaldi
12https://gitlab.idiap.ch/bob/bob.kaldi
13https://github.com/yajiemiao/pdnn
14https://github.com/srvk/eesen
15https://github.com/pykaldi/pykaldi

5889978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

Fig. 1. Extended Kaldi software architecture

provided by OpenFst’s official Python wrapper. While it is
still in its infancy, PyKaldi already makes working with Kaldi
in Python a breeze. Major features of PyKaldi include:

• Near-complete coverage of Kaldi.

• Extensible design. PyKaldi code is modular and easy
to maintain. Kaldi and OpenFst class hierarchies are
wrapped at multiple levels exposing generic interfaces
in Python. Any changes in Kaldi C++ API can be easily
mirrored in Python.

• Open license. PyKaldi is licensed under Apache Li-
cense v2.0.

• Extensive documentation. PyKaldi already has exten-
sive documentation for a number of submodules. All
API documentation is automatically generated from
source files. Also, since most of PyKaldi API directly
mirrors Kaldi API, Kaldi’s own documentation is ap-
plicable to most of PyKaldi.

• Thorough testing. PyKaldi already has extensive tests
for a number of submodules. These tests are fairly sim-
ilar to the tests in Kaldi but also have checks for addi-
tional Python APIs.

• Example scripts. PyKaldi repository includes example
Python scripts that are drop in replacements for some
Kaldi executables. We are also working on example se-
tups that demonstrate the use of PyKaldi together with
popular Python packages.

• Support for both Python 2.7 and 3.5+.

2. IMPLEMENTATION

2.1. CLIF bindings

When creating Python bindings for C++ one has a multitude
of options. One of the older and more mature projects is Sim-
plified Wrapper and Interface Generator (SWIG)16. It con-
nects programs written in C and C++ with multiple languages
including Python and Java. Unfortunately, SWIG is infamous
for its steep learning curve17, and the size of the code it gen-
erates18, which makes debugging cumbersome when some-
thing goes wrong. Boost.Python19 and pybind1120 provide
a high-level interface for wrapping C++ code in C++. Both
are designed to be non-intrusive, which makes them some of
the best options to expose third party libraries in Python. Py-
bind11 also has dedicated support for NumPy arrays.

Perhaps the most popular option for wrapping C/C++
code in Python is Cython. Cython [8] is both a Python-like
language and a compiler. Cython language extends Python
with C type annotations for functions, variables and class at-
tributes. It allows the user to write Python code that calls C++
code back and forth natively. When compiled, this generates
efficient C code that can be run directly by the CPython in-
terpreter. From a user’s perspective, Cython extensions look
like any other Python extension. Cython language provides
native support for almost all C++ features, including template
classes and function overloading.

PyKaldi extension modules are generated with C++ Lan-
guage Interface Foundation (CLIF)21. CLIF is a newly re-
leased open-source project developed at Google. CLIF uses
LLVM and Clang C++ compiler [12] to parse the type infor-
mation from a C++ header, which is then used to match the
API definition given for that header, and generate an exten-
sion module. CLIF allows users to modify the C++ API on-
the-fly. This includes renaming classes, functions and meth-
ods; mapping functions to Python’s magic methods (e.g., con-
structors to __init__ or accessors to __getitem__); han-
dling class templates and function overloading, treating out-
put parameters as return values, and automatically generating
setters and getters for class fields. We selected CLIF because
it allowed us to wrap Kaldi’s codebase in a concise and read-
able way. With CLIF, we are able to track Kaldi changes more
efficiently, as there are fewer modifications to be made on our
side. Moreover, CLIF’s auto-generated code is significantly
easier to read, understand and modify than the code gener-
ated by SWIG or Cython. Unlike Cython, CLIF generated
class wrappers do not need to be re-wrapped via composition

16www.swig.org
17http://www.scipy-lectures.org/advanced/

interfacing_with_c/interfacing_with_c.html
18https://groups.google.com/forum/#!topic/

cython-users/lQO9lGj5JEc
19https://github.com/boostorg/python
20http://github.com/pybind/pybind11
21https://github.com/google/clif

5890

to be directly accessible in CPython. Python objects produced
by CLIF can be inherited or directly passed as arguments to
wrapped functions without the need for explicit type casting
or unwrapping. On the downside, CLIF is a project at its
infancy, with limited documentation and examples, and an in-
cipient community. CLIF’s main restriction is that it requires
code to be C++11 compliant and follow Google C++ style22,
which sometimes forced us to modify or extend Kaldi code-
base. For each module, class, and function wrapped, CLIF
automatically generates a surrogate docstring, a string literal
that is used to document the wrapper in Python. To simplify
the process of documenting PyKaldi, we extended CLIF’s de-
fault behavior by allowing optional docstrings to be speci-
fied inside CLIF files. When provided, these docstrings are
bound to the appropriate documentation slots of the associ-
ated Python modules/classes/functions.

2.2. PyKaldi Package

PyKaldi has a modular design which makes it easy to main-
tain and extend without rebuilding the whole codebase.
Source files are organized in a directory tree that is a replica
of the Kaldi source tree. Each directory defines a subpackage
and contains only the wrapper code written for the associated
Kaldi library. The wrapper code consists of:

• CLIF C++ API descriptions defining the types and
functions to be wrapped and their Python API,

• C++ headers defining the shims for Kaldi code that is
not compliant with the Google C++ style,

• Python modules grouping together related extension
modules generated with CLIF and extending the raw
CLIF wrappers to provide a more Pythonic API.

While the wrappers generated by CLIF are in most cases ad-
equate for calling into Kaldi libraries, PyKaldi often modi-
fies and extends them in Python (and in some cases in C++)
to provide a better user experience. The rest of this sec-
tion presents good examples of new functionality added by
PyKaldi.

2.2.1. Matrix Package

PyKaldi vector and matrix types are tightly integrated with
NumPy arrays. They can be easily converted to NumPy ar-
rays and vice versa without copying the underlying mem-
ory buffers. They also implement the NumPy array inter-
face which allows them to be used with functions expecting
NumPy arrays without explicit conversion. Since conversion
to/from Numpy arrays is almost zero-cost, PyKaldi vector
and matrix types support the familiar Numpy advanced in-
dexing conventions simply by offloading the __setitem__

and __getitem__ operations to NumPy, e.g.
22http://google.github.io/styleguide/cppguide.

html

v[k] = 2 # set a vector item
m[i,j] = -1 # set a matrix item
m[:,j] = 0 # set a matrix column
m[:,::2] = m[:,1::2] # set odd matrix columns

PyKaldi vectors and matrices can be constructed from other
array-like objects. Vector and Matrix instances are con-
structed by copying the items from the source objects.
SubVector and SubMatrix instances, on the other hand,
share data with the source objects used to construct them
whenever possible. A copy is made only if the source object
has an __array__ method and that method returns a copy,
or if the source object is a sequence, or if a copy is needed
to satisfy any of the other requirements (data type, order,
etc.). SubVector and SubMatrix instances do not own
their memory buffers. To make sure their memory buffers
are not deallocated while they are still in scope, they keep
internal references to objects that they share data with.

2.2.2. FST Package

PyKaldi has built-in support for common FST types (in-
cluding Kaldi lattices) and operations. The API for the user
facing PyKaldi FST types and operations is entirely defined
in Python mimicking the API exposed by OpenFst’s official
Python wrapper to a large extent. This includes integrations
with Graphviz [13] and IPython [6] for interactive visual-
ization of FSTs. However, unlike OpenFst’s official Python
wrapper, which uses Cython, PyKaldi’s OpenFst bindings
are generated with CLIF so that FST types work seamlessly
with the rest of the PyKaldi package. Further, in contrast to
OpenFst’s official Python wrapper, PyKaldi does not wrap
OpenFst scripting API, which uses virtual dispatch, function
registration, and dynamic loading of shared objects to provide
a common interface shared by FSTs of different semirings.
While this change requires wrapping each semiring special-
ization of an OpenFst class or function template separately, it
gives users the ability to pass PyKaldi FST objects directly to
the myriad Kaldi functions accepting FST arguments.

2.2.3. Error Handling

Kaldi codebase makes extensive use of assertions for check-
ing the sanity of inputs and self-consistency of computations.
Unfortunately, if a Kaldi assertion fails at runtime, it results in
an unrecoverable program abort, which is not a great experi-
ence to have during an interactive Python session. Further, all
Kaldi errors, including assertion failures, print a stack trace
which makes it hard to see the actual error message when
working interactively. To address these concerns we added
new functions to Kaldi that enable/disable stack traces and the
abort call in failed assertion handling. PyKaldi disables both
by default but the user has the option of enabling them back.
In addition to the sanity checks performed by Kaldi, PyKaldi
also does its own checks in Python to make sure that the pa-
rameters passed to Kaldi have the correct types and sizes.

5891

3. EXAMPLE
example.py
from kaldi.feat.mfcc import Mfcc, MfccOptions
from kaldi.matrix import SubVector, SubMatrix
from kaldi.util.options import ParseOptions
from kaldi.util.table import SequentialWaveReader
from kaldi.util.table import MatrixWriter
from numpy import mean
from sklearn.preprocessing import scale

usage = """Extract MFCC features.

Usage: example.py [opts...] <rspec> <wspec>
"""
po = ParseOptions(usage)
po.register_float("min-duration", 0.0,

"minimum segment duration")
mfcc_opts = MfccOptions()
mfcc_opts.frame_opts.samp_freq = 8000
mfcc_opts.register(po)

parse command-line options
opts = po.parse_args()
rspec, wspec = po.get_arg(1), po.get_arg(2)

mfcc = Mfcc(mfcc_opts)
sf = mfcc_opts.frame_opts.samp_freq

with SequentialWaveReader(rspec) as reader, \
MatrixWriter(wspec) as writer:
for key, wav in reader:

if wav.duration < opts.min_duration:
continue

assert(wav.samp_freq >= sf)
assert(wav.samp_freq % sf == 0)
>>> print(wav.samp_freq)
16000.0

s = wav.data()
>>> print(s)
11891 28260 ... 360 362
11772 28442 ... 362 414
[kaldi.matrix.Matrix of size 2x23001]

downsample to sf [default=8kHz]
s = s[:,::int(wav.samp_freq / sf)]

mix-down stereo to mono
m = SubVector(mean(s, axis=0))

compute MFCC features
f = mfcc.compute_features(m, sf, 1.0)

standardize features
f = SubMatrix(scale(f))
>>> print(f)
-0.8572 -0.6932 ... 0.5191 0.3885
-1.3980 -1.0431 ... 1.4374 -0.2232
... ...
-1.7816 -1.4714 ... -0.0832 0.5536
-1.6886 -1.5556 ... 1.0878 1.1813
[kaldi.matrix.SubMatrix of size 142x13]

write features to archive
writer[key] = f

Listing 1: Extracting MFCC features with PyKaldi

Listing 1 gives an example Python script for extracting
MFCC features with PyKaldi and standard utilities from
NumPy and scikit-learn [10]. The script first sets the options
for MFCC extraction, then iterates over the input table to
extract and write MFCC features for each input wave file.
Each wave file is downsampled to 8KHz and mixed down
to mono before MFCC features are extracted. Raw MFCC
features are standardized by removing the mean and scaling
to unit variance before they are written out. PyKaldi option
parsing API is slightly different from the underlying Kaldi op-
tion parsing API. Command-line options for the main script
are registered by calling type-specific registration methods
that accept name, default value and help string arguments e.g.
min-duration in the example. The parse_args method of
a PyKaldi ParseOptions instance returns a simple names-
pace object containing the parsed option values for the main
script. Parsed values for other options are directly written
into the appropriate fields of associated options instances,
e.g. mfcc_opts in the example. In typical Kaldi fashion,
input/output tables are constructed with read/write specifiers,
strings that describe how the data should be read/written.
PyKaldi table readers/writers implement the context manager
interface, hence they do not need to be closed when they
are used in a with statement. PyKaldi table writers also
support a pseudo-dictionary interface for writing given key
value pairs. Since PyKaldi matrices implement NumPy array
interface, they can be passed to functions expecting Numpy
array arguments, such as mean and scale, without explicit
conversion. The NumPy arrays returned from functions can
be easily converted back to Kaldi vector and matrix types by
constructing new SubVector and SubMatrix objects which
share the underlying memory buffers with the source arrays
whenever possible, i.e. no data is copied unless necessary.

4. CONCLUSION

We described PyKaldi, an open-source Python scripting layer
for Kaldi. PyKaldi uses CLIF to generate raw bindings into
Kaldi C++ API and extends those bindings in Python to pro-
vide a better user experience. At the time of writing, PyKaldi
already exposes a large part of the Kaldi C++ API. We be-
lieve the next phase of the project will largely focus on adding
example setups using PyKaldi together with popular Python
packages, making the API more Python friendly, and extend-
ing the documentation. We are hopeful that the Kaldi and
Python communities will embrace PyKaldi and contribute to
its continued development going forward.

5. REFERENCES

[1] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely, “The kaldi

5892

speech recognition toolkit,” in IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding. Dec.
2011, IEEE Signal Processing Society, IEEE Catalog
No.: CFP11SRW-USB.

[2] Eric Jones, Travis Oliphant, Pearu Peterson, et al.,
“SciPy: Open source scientific tools for Python,”
"http://www.scipy.org/", 2001.

[3] Travis E Oliphant, “Python for scientific computing,”
Computing in Science & Engineering, vol. 9, no. 3,
2007.

[4] K Jarrod Millman and Michael Aivazis, “Python for
scientists and engineers,” Computing in Science & En-
gineering, vol. 13, no. 2, pp. 9–12, 2011.

[5] Stéfan van der Walt, S Chris Colbert, and Gael Varo-
quaux, “The numpy array: a structure for efficient nu-
merical computation,” Computing in Science & Engi-
neering, vol. 13, no. 2, pp. 22–30, 2011.

[6] Fernando Pérez and Brian E. Granger, “IPython: a sys-
tem for interactive scientific computing,” Computing in
Science and Engineering, vol. 9, no. 3, pp. 21–29, May
2007.

[7] J. D. Hunter, “Matplotlib: A 2d graphics environment,”
Computing In Science & Engineering, vol. 9, no. 3, pp.
90–95, 2007.

[8] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro
Dalcin, Dag Sverre Seljebotn, and Kurt Smith, “Cython:
The best of both worlds,” Computing in Science & En-
gineering, vol. 13, no. 2, pp. 31–39, 2011.

[9] Wes McKinney, “Data structures for statistical comput-
ing in python,” in Proceedings of the 9th Python in Sci-
ence Conference. SciPy Austin, TX, 2010, vol. 445, pp.
51–56.

[10] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al., “Scikit-learn: Machine learning in
python,” Journal of Machine Learning Research, vol.
12, no. Oct, pp. 2825–2830, 2011.

[11] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
ciech Skut, and Mehryar Mohri, “Openfst: A general
and efficient weighted finite-state transducer library,”
Implementation and Application of Automata, pp. 11–
23, 2007.

[12] Chris Lattner and Vikram Adve, “Llvm: A compila-
tion framework for lifelong program analysis & trans-
formation,” in Proceedings of the international sympo-
sium on Code generation and optimization: feedback-

directed and runtime optimization. IEEE Computer So-
ciety, 2004, p. 75.

[13] Emden R. Gansner and Stephen C. North, “An open
graph visualization system and its applications to soft-
ware engineering,” SOFTWARE - PRACTICE AND EX-
PERIENCE, vol. 30, no. 11, pp. 1203–1233, 2000.

5893

