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ABSTRACT
In this paper we examine dropout approaches in a Long Short
Term Memory (LSTM) based automatic speech recognition
(ASR) system trained with the Connectionist Temporal Classi-
fication (CTC) loss function. In particular, using an Eesen
based LSTM-CTC speech recognition system, we present
dropout implementations that result in significant improve-
ments in speech recognizer performance on Librispeech and
GALE Arabic datasets, with 24.64% and 13.75% relative re-
duction in word error rates (WER) from their respective base-
lines.

Index Terms— LSTM, dropout, speech recognition

1. INTRODUCTION

Dropout is a very effective regularization technique in neural
network training wherein a random subset of neural activa-
tions is set to zero, i.e., masked, at each training iteration.
The general approach to apply dropout is well established for
feedforward networks [1], however, application to recurrent
neural networks has seen a number of variants [2, 3, 4, 5].
In speech recognition, dropout in feedforward networks has
been explored extensively, e.g., [6, 7, 8, 9, 10]. That said,
application of dropout in recurrent neural network based ASR
systems had been limited, [3] reported results on Wall Street
Journal (WSJ) corpus; only recently, in efforts parallel to and
independent of our own, has dropout been applied in recurrent
neural network based ASR systems across large vocabulary
speech recognition problems [11]. In this paper we present
our work on extending the simple single factor dropout mask
formulation to the speech recognition task in an LSTM-CTC
based system.

This paper starts with a brief overview of our baseline
LSTM-CTC system. We follow in Section 3 with quick review
of prior work, followed by our work and results on feedforward
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dropout and then our efforts with recurrent dropout. In Section
4 we explore dropout combination approaches and present
results before we summarize and conclude this paper.

2. BASELINE LSTM-CTC SYSTEM

Our baseline system is based on the publicly available LSTM-
CTC based Eesen Toolkit [12]. The LSTM model consists
of layers of LSTM cells that receive input from the previous
layer or model input, the feedforward connection, as well as
the cell’s immediate past or future. Each LSTM cell consists
of three gates: input, forget, and output, which control input
signal flow and memory retention. The vector formulas that
describe the LSTM cell are

it = σ(Wixt +Riht−1 +Pict−1 + bi) (1)
ft = σ(Wfxt +Rfht−1 +Pfct−1 + bf) (2)
ct = ft � ct−1 + it � φ(Wcxt +Rcht−1 + bc) (3)
ot = σ(Woxt +Roht−1 +Poct + bo) (4)
ht = ot � φ(ct) (5)

where xt is the input vector at time t, W are rectangular
input weight matrices connecting inputs to the LSTM cell, R
are square recurrent weight matrices connecting the previous
memory cell state to the LSTM cell, P are diagonal peephole
weight matrices and b are bias vectors. Functions σ and φ are
the logistic sigmoid and tanh nonlinearities respectively. �
represents the point-wise multiplication operator.

The LSTM model in our experiments consists of 4 bidirec-
tional stacked layers of 640 LSTM cells (320 in each direction).
Details of our acoustic training, language modeling, and test
sets on Librispeech is in [13]. The Arabic system uses GALE
Phase 2 Broadcast Conversation corpora (audio: LDC2013S02,
LDC2013S027; transcripts: LDC2013T17, LDC2013T04)
consisting of ~250hrs of acoustic data to build a grapheme
based system. We follow the Kaldi[14] GALE Arabic s5b

recipe1 for data preparation, grapheme set, dictionary and
language model.The Librispeech system is phoneme based
whereas the GALE Arabic system is a grapheme based system.
Table 1 summarizes the baseline WER on these corpora.

1https://github.com/kaldi-asr/kaldi/tree/master/egs/gale_arabic/s5b
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Table 1. Librispeech and GALE Arabic baseline.

System %WER

Librispeech 100hr (dev-clean) 9.78
GALE Arabic 250hr (withheld test) 22.84

3. DROPOUT IN RECURRENT MODELS

Initial implementations of dropout for recurrent neural net-
works focused on application of dropout on the feedforward
connections only [2, 15, 16]. Subsequently, Moon et. al. [3] in-
troduced RNNDrop, in which dropout is applied to LSTM cell
memory at a sequence level, i.e., the dropout mask is kept fixed
across each training sequence, or in the case of speech, each ut-
terance. Variational RNN [5] is similar, but dropout is applied
to the LSTM cell output recurrent connection as well as the
forward non-recurrent connections, also at a sequence level.
An interesting variant is recurrent dropout without memory
loss [4], where dropout is applied to the LSTM cell memory
update, which prevents the LSTM cell memory from being re-
set as is the case with RNNDrop. More recently, [11] explores
dropout in projected LSTM based ASR systems. Given the
slightly different architecture of the projected LSTM cell, they
investigate different dropout location approaches and further
incorporate a schedule driven dropout rate, where the dropout
factor changes over time, and show relative WER reductions,
on the order of 3% to 7%, on a variety of data sets.

In our experiments, detailed below, we explore dropout on
feedforward and recurrent connections separately as well as
together. To maintain a common operating point in our experi-
ments, we fix the dropout rate to 0.2 for forward and recurrent
connections as applicable. It is likely that a more compre-
hensive exploration of dropout rates will provide additional
performance improvement.

3.1. Dropout on feedforward connections

Dropout on feedforward connections in LSTM networks is
closely aligned with the original formulation of dropout where
the composite LSTM cell is the unit to be dropped. In [15]
and [2], the argument is made to apply dropout only on the
feedforward connections and not the recurrent connections so
as to minimize impact on the sequence modeling capability of
a recurrent network. In the implementation described in [2],
dropout is applied every time step to the feedforward connec-
tions. However, given the within layer recurrence, application
of dropout at every time step would be a noisy implementation
of the classical dropout approach, i.e., each sampling of the
networks would receive input from another sampling of the
network via the recurrent connections. We argue that a more
faithful implementation for recurrent networks would be to re-
tain the dropout mask across a complete sequence/utterance for
the forward non-recurrent connections to eliminate this cross-

Table 2. Experiments with dropout on feedforward connec-
tions on Librispeech. Postfix step and seq indicate whether the
dropout mask is sampled every time step or every sequence.
RI refers to relative improvement over baseline.

Librispeech System %WER %RI

Librispeech baseline 9.78 -
Forward-step 9.51 2.76
Forward-seq 10.03 −2.56

Table 3. Experiments with dropout on feedforward connec-
tions with stacked/strided (SS) features.

Librispeech System %WER %RI

Librispeech w/ SS feats 10.72 −9.61
Forward-step 9.17 6.24
Forward-seq 8.63 11.76

sampling noise. In this instance, each sequence is trained on
a particular sampling of the network, rather than a multitude
of sampled networks driving a noisy recurrence. We note that
this is identical to the dropout implementation in [5] for for-
ward connections. Figure 1 illustrates the forward dropout
implementation in our experiments.

To validate our thinking, we experimented with both time
step and sequence forward dropout variants. Table 2 details our
results. We expected a performance improvement with dropout
mask sampled every time step and a larger improvement when
the dropout mask is sampled every sequence. However, while
we see an improvement with dropout mask sampling every
time step, when the dropout mask is sampled every sequence,
performance is worse than without dropout. Inspection of the
training logs showed that this model started to overfit early,
driving the lower performance.

In other experiments detailed in [13], we observed a
slight but better relative WER improvement with 9-fold max
perturbation, our data augmentation protocol, using stacked
and strided features. We proceeded to investigate if dropout
would also show a similar magnified effect when coupled
with stacked and strided features. For the stacked and strided
feature we use the current frame and ±1 feature frames, for
a composite stacked feature of 3 frames, and a stride of 3,
for an effective 30ms frame rate vs. the original 10ms frame
rate. We applied the same forward dropout variants as in
Table 2 with stacked and strided features; Table 3 details these
results. Per time step dropout mask sampling with stack and
stride features yields a 14.5% relative WER improvement over
the corresponding baseline, and per sequence dropout mask
sampling yields 19.5% relative WER improvement. To be
conservative, compared to the base feature system with 9.78%
WER, we still see a relative WER improvement of 6.2% and
11.8% respectively for the time step and sequence variants.
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Fig. 1. Forward dropout as implemented in our experiments. The dropout mask can be sampled either every time step or every
sequence. In the latter, the dropout mask is fixed for all time steps in any specific sequence.

During training we found that networks trained on stacked
and strided features were able to train for many more epochs
without overfitting when coupled with dropout. Given this
strong outperformance we shifted to using stacked and strided
features for all subsequent experiments.

3.2. Dropout on recurrent connections

In exploring dropout for recurrent connections, we considered
two approaches to recurrent connection dropout, RNNDrop [3]
and recurrent dropout without memory loss [4]. In RNNDrop,
dropout is applied to memory cell content, in particular, Equa-
tion 3 which describes the memory cell, changes as below:

ct = mt �
(
ft � ct−1

+ it � φ(Wcxt +Rcht−1 + bc)
) (6)

where mt represents the dropout mask at time t.
In the case of recurrent dropout without memory loss,

dropout is only applied to the incremental memory cell update,
and Equation 3 changes as below:

ct =ft � ct−1

+mt � it � φ(Wcxt +Rcht−1 + bc)
(7)

where again mt represents the dropout mask at time t.
We expect recurrent dropout without memory loss to show

better performance vis-à-vis RNNDrop since the cell memory
is not being continually reset as is the case with RNNDrop.

Table 4 details our results, where we have abbreviated
recurrent dropout without memory loss as no memory loss
(NML) dropout. We exclude the RNNDrop-seq model since
it suffered from an exploding memory cell value problem, an
issue predicted in [4]. In line with our expectations, NML
dropout worked better than RNNDrop, with the per sequence
dropout mask variant slightly edging out the per time step
dropout mask variant, inline with trends reported in [4] albeit
on different tasks. For the NML dropout variants, we see rela-
tive WER reductions over 20% compared to the corresponding
baseline, or ~13% relative WER reduction compared to the
prior best system without dropout WER of 9.78%.

In the RNNDrop-step model, with a dropout rate of 0.2,
we effectively reset ~99%2 of all LSTM cells within 20 time
steps, i.e., each LSTM cell retains at most 600ms of memory
with our 30ms frame rate. An interesting corollary of this

21− 0.820

Table 4. Experiments with dropout on recurrent connections.

Librispeech System %WER %RI

Librispeech w/ SS feats 10.72 -9.61
RNNDrop-step 9.07 7.26
NML-step 8.55 12.58
NML-seq 8.45 13.60

Table 5. Experiments with naïve combination.

Librispeech System %WER %RI

RNNDrop-step + Forward-step 8.60 12.07
RNNDrop-step + Forward-seq 8.85 9.51
NML-step + Forward-step 8.08 17.38
NML-step + Forward-seq 7.76 20.65
NML-seq + Forward-step 7.72 21.06
NML-seq + Forward-seq 7.97 18.51

observation is that we can consider refactoring a bidirectional
LSTM with RNNDrop system as an unidirectional LSTM sys-
tem with suitably delayed output, with similar or near similar
performance and lower latency.

4. COMBINING FEEDFORWARD AND RECURRENT
DROPOUT

4.1. Naïve dropout combination

The simplest approach to combine dropout is to apply both
forward and recurrent dropout concurrently during network
training; we refer to this combined dropout approach as naïve
dropout combination. Indeed this is the approach that has been
traditionally taken while combining dropout [5, 4].

To be exhaustive we ran experiments with all combinations
of the three recurrent dropout variants and the two forward
dropout variants, albeit with the same fixed dropout rate of
0.2. Table 5 summarizes these models and their corresponding
WERs. The RNNDrop combination variants, while showing
better WER performance than the RNNDrop alone system,
are worse, or at best similar, in performance to the forward
dropout alone models. On the other hand, the NML combi-
nation variants all show performance improvements over the
NML or forward dropout alone models.
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Table 6. Comparison to hybrid DNN systems.

System %WER

Librispeech 100hr best (this paper) 7.37
Kaldi (p-norm DNN, LDA+MLLT+SAT, 100hrs training)† 7.91
Kaldi (p-norm DNN, LDA+MLLT+SAT, 460hrs training)† 7.16

GALE Arabic 250hr best (this paper) 19.70
Kaldi (TDNN chain model, MMI, 415hrs training)‡ 20.26
Kaldi (TDNN/LSTM chain model, MMI, 415hrs training)‡ 17.64
† See Kaldi GitHub repo under egs/librispeech/s5/RESULTS (retrieved 10/26/2017).
‡ See Kaldi GitHub repo under egs/gale_arabic/s5b/RESULTS (retrieved 10/26/2017).

4.2. Stochastic and cascade dropout combination

During our experimentation, it was clear that different dropout
approaches had very different training profiles. One conjecture
is that the different dropout approaches impact regularization
in different ways. If so, we can direct this regularization more
deliberately than a naïve dropout combination.

One combination approach is to apply forward or recurrent
dropout singly rather than concurrently. The exact approach
we implemented is that for each minibatch, we pick from an
equiprobable Bernoulli distribution to decide between forward
or recurrent dropout, and then apply the appropriate dropout
for that minibatch. Note that there is nothing special in our
choice of distribution or decision choice, an equally valid
implementation could bias towards a particular dropout or
introduce an additional decision choice to pick between for-
ward and/or recurrent dropout types. We refer to this general
approach of distribution based choice to determine dropout
combination as stochastic dropout combination.

Another combination approach is to train the model with
one type, combination or parameterization of dropout, and
then switch to a different type of dropout, combination or
parameterization, at an opportune time. Given that we cascade
different dropout combinations during training we refer to
this general approach as cascade dropout combination. The
dropout schedule approach described in Cheng et. al. [11]
is a specific example of cascade dropout combination. We
should note that cascade and stochastic dropout combination
are orthogonal approaches and can be applied at the same time.

Given our limited compute resources, we were unable
to systematically explore the many permutations of dropout
combination in a reasonable time frame. Table 7 summarizes
our experiments with stochastic dropout combination on Lib-
rispeech and GALE Arabic. We find that while not all stochas-
tic dropout combination results show better performance over
naïve dropout combination, in the case of sequence based
NML/Forward dropout combination we see an additional 6.6%
relative reduction in WER over naïve dropout combination.
For GALE Arabic, a grapheme based ASR system, we see
a large 13.75% improvement in WER with our best stochas-
tic combination approach. Table 8 illustrates one example of

Table 7. Experiments with stochastic combination.

Librispeech System %WER %RI

NML-step + Forward-step 8.76 10.43
NML-step + Forward-seq 8.02 18.00
NML-seq + Forward-step 7.86 19.63
NML-seq + Forward-seq 7.44 23.93

GALE Arabic baseline 22.84 -
+ SS feats + NML-seq + Forward-seq 19.70 13.75

Table 8. Experiments with cascade combination.

Librispeech System %WER %RI

NML-seq + Forward-step (1) 7.72 21.06
NML-seq + Forward-seq (2) 7.97 18.51
Cascade (1) (2) 7.37 24.64

cascade dropout combination where we see a 4.5% relative
improvement in WER over the individual systems alone.

Note that with these results we have demonstrated, for
the first time, LSTM-CTC performance to be equivalent or
better than similarly trained hybrid DNN systems on smaller
(100-300hr) corpora. Table 6 compares the best systems in this
paper to equivalent systems built with the Kaldi toolkit [14].
We note that for both Librispeech and GALE Arabic, our best
systems with dropout are comparable or very close in WER
performance to systems trained with much more data, 460hr
vs 100hr on Librispeech, 415hr vs 250hr on GALE Arabic.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have presented dropout approaches that signif-
icantly improve LSTM-CTC ASR system performance, across
languages (English vs. Arabic) and system type (phoneme vs.
grapheme). Dropout implementations and Librispeech recipes
have been merged into the public Eesen GitHub repository3.

3https://github.com/srvk/eesen
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