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ABSTRACT

In this paper, we present an improved feedforward sequential mem-
ory networks (FSMN) architecture, namely Deep-FSMN (DFSMN),
by introducing skip connections between memory blocks in adjacent
layers. These skip connections enable the information flow across
different layers and thus alleviate the gradient vanishing problem
when building very deep structure. As a result, DFSMN signifi-
cantly benefits from these skip connections and deep structure. We
have compared the performance of DFSMN to BLSTM both with
and without lower frame rate (LFR) on several large speech recog-
nition tasks, including English and Mandarin. Experimental results
shown that DFSMN can consistently outperform BLSTM with dra-
matic gain, especially trained with LFR using CD-Phone as mod-
eling units. In the 20000 hours Fisher (FSH) task, the proposed
DFSMN can achieve a word error rate of 9.4% by purely using
the cross-entropy criterion and decoding with a 3-gram language
model, which achieves a 1.5% absolute improvement compared to
the BLSTM. In a 20000 hours Mandarin recognition task, the LFR
trained DFSMN can achieve more than 20% relative improvement
compared to the LFR trained BLSTM. Moreover, we can easily de-
sign the lookahead filter order of the memory blocks in DFSMN to
control the latency for real-time applications.

Index Terms— DFSMN, FSMN, LFR, LVCSR, BLSTM

1. INTRODUCTION

Recently, deep neural networks have become the dominant acoustic
models in large vocabulary continuous speech recognition (LVCSR)
systems. Depending on how the networks are connected, there
exist various types of deep neural networks, such as feedforward
fully-connected neural networks(FNNs) [1, 2] , convolutional neural
networks(CNNs)[3, 4] and recurrent neural networks (RNNs) [5, 6].
As opposed to FNNs that can only learn to map a fixed-size input to
a fixed-size output, RNNs can learn to model sequential data over
an extended period of time and store the memory in the network
weights, then carry out rather complicated transformations on the
sequential data. Thereby, researchers have paid more and more
attention to RNNs, especially the long short-term memory networks
(LSTM) [7]. It is widely observed that LSTM [8] and its variations
[9, 10] can significantly outperform the FNNs on various acoustic
modeling tasks.

While RNNs are theoretically powerful, the learning of RNNs
usually relies on the so-called back-propagation through time
(BPTT) [11] due to the internal recurrent cycles. The BPTT sig-
nificantly increases the computational complexity of the learning,
and even worse, it may cause many problems in learning, such
as gradient vanishing and exploding [12]. As an alternative, some
feedforward architecture have been proposed to model the long-term

dependency. A straightforward attempt is the so-called unfolded
RNN [13], where an RNN is unfolded in time for a fixed number
of time steps. The unfolded RNN only needs comparable training
time as the standard FNNs while achieving better performance than
FNNs. Time delay neural network (TDNN) [14, 15, 16] is another
popular feedforward architecture which can efficiently model the
long temporal contexts.

Recently, in [17, 18], we have proposed a simple non-recurrent
structure, namely feedforward sequential memory networks (FSMN),
which can effectively model long term dependency in sequential
data without using any recurrent feedback. Experimental results on
acoustic modeling and language modeling tasks have shown that
FSMN can significantly outperform the recurrent neural networks
and these models can be learned much more reliably and faster.
Furthermore, a variant FSMN architecture namely compact FSMN
(cFSMN) is proposed in [19, 20] to simplify the FSMN architecture
and further speed up the learning.

In this work, based on previous FSMN works and recent works
on neural networks with very deep architecture [21, 22, 23], we have
presented an improved FSMN structure namely Deep-FSMN (DF-
SMN) by introducing skip connections between memory blocks in
adjacent layers. These skip connections enable the information flow
across different layers and thus alleviate the gradient vanishing prob-
lem when building very deep structure. Moreover, considering de-
mand of real-world applications, we propose to combine DFSMN
with lower frame rate (LFR) [24] technology to speed up decoding
and optimize the DFSMN topology to meet the latency requirement.
In [19, 20], the previous FSMN works are evaluated on the popular
300 hours Switchboard (SWB) task. In this work, we try to evaluate
the performance of DFSMN on several much larger speech recog-
nition tasks, including English and Mandarin. Firstly, in the 2000
hours English Fisher (FSH) task, the proposed DFSMN with much
smaller model size can achieve an absolute 1.5% word error rate re-
duction compared to the popular BLSTM. Furthermore, in a 20000
hours Mandarin task, the LFR trained DFSMN have achieved more
than 20% relative improvement compared to the latency controlled
BLSTM (LCBLSM) [23, 25]. More importantly, we can easily de-
sign the lookahead filter order of the memory blocks in DFSMN to
match the latency demand of real-time applications. In our experi-
ments, a LFR trained DFSMN with 5 frames delay can still outper-
form the LFR trained LCBLSTM with 40 frames delay.

2. FROM FSMN TO CFSMN

FSMN is proposed in [17, 18], which is inspired by the filter design
knowledge in digital signal processing that any infinite impulse re-
sponse (IIR) filter can be well approximated using a high-order finite
impulse response (FIR) filter. Because the recurrent layer in RNNs
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Fig. 1. Illustration of the FSMN and cFSMN.

can be conceptually viewed as a first-order IIR filter, it may be pre-
cisely approximated by a high-order FIR filter. Therefore, FSMN
extends the standard feedforward fully connected neural networks by
augmenting some memory blocks, which adopt a tapped-delay line
structure as in FIR filters, into the hidden layers. For instance, Fig-
ure 1(a) shows a FSMN with one memory block added into its `-th
hidden layer. The learnable FIR-like memory blocks in FSMNs may
be used to encode long context information into a fixed-size repre-
sentation, which helps the model to capture long-term dependency.
Moreover, we can add several memory blocks to multiple hidden
layers of a deep neural network to capture more context informa-
tion in various abstraction levels. In [18], depending on the encod-
ing method to be used, we have proposed two versions of FSMNs,
namely scalar FSMNs (sFSMN) and vectorized FSMNs (vFSMN).
For the vFSMN, the formulation of the memory block takes the fol-
lowing form:

h̃
`

t =

N1∑
i=0

a`
i � h`

t−i +

N2∑
j=1

c`j � h`
t+j (1)

Where � denotes element-wise multiplication of two equally-sized
vectors. N1 is called the look-back order, denoting the number of
historical items looking back to the past, and N2 is called the looka-
head order, representing the size of the lookahead window into the
future. The output from the memory block, h̃`

t , may be regarded as
a fixed-size representation of the long surrounding context at time
instance t. As shown in Figure 1 (a), h̃`

t can be fed into the next
hidden layer in the same way as h`

t . As a result, we can calculate the
activation of the units in the next hidden layer as follows:

h`+1
t = f(W`h`

t + W̃`h̃`
t + b`) (2)

Considering the additional parameters introduced by the mem-
ory blocks, a variant FSMN architecture namely compact FSMN
(cFSMN) is proposed in [19] to simplify the FSMN architecture and
speed up the learning. As shown in Figure 1 (b), it is a cFSMN with
a single cFSMN-layer in the `-th layer. Compared to the standard
FSMN, the cFSMN can be viewed as inserting a smaller linear pro-
jection layer after the nonlinear hidden layers and adding the mem-
ory blocks to the linear projection layers instead of the hidden layers.
The encoding formulation of the memory block in cFSMN takes the
following form:

p̃`
t = p`

t +

N1∑
i=0

a`
i � p`

t−i +

N2∑
j=1

c`j � p`
t+j . (3)

Fig. 2. Illustration of Deep-FSMN (DFSMN) with skip connection.

Moreover, we can calculate the activation of the units in the next
hidden layer as follows:

h`+1
t = f(U`p̃`

t + b`+1) (4)

As shown in Figure 1, both FSMN and cFSMN remain as a pure
feedforward structure that can be efficiently learned using the stan-
dard back-propagation (BP) with mini-batch based stochastic gradi-
ent descent (SGD).

3. DEEP-FSMN

In previous cFSMN, as introduced in section 2, the standard hidden
layer is decomposed into two layers by using low-rank weight matrix
factorization. Thereby, for a cFSMN with 4 cFSMN-layers and 2
DNN layers, the total number of layers is 12. If we want to train
deeper cFSMN by directly adding more cFSMN-layers, it will suffer
from the gradient vanishing problem. Inspired by recent works on
training very deep neural architectures with skip connection, such
as residual [22] or highway networks [21], we propose an improved
FSMN architecture namely Deep-FSMN (DFSMN) in this work .

The architecture of DFSMN is as shown in Figure 2. We add
some skip connections between the memory blocks of standard
cFSMN, where the output of the lower layer memory block can
be directed flow to the higher layer memory block. During back-
propagation, the gradients of higher layer can also be assigned
directly to lower layer that help to overcome the gradient vanishing
problem. The formulation of the memory block in DFSMN takes
the following form:

p̃`
t = H(p̃`−1

t )+p`
t +

N`
1∑

i=0

a`
i �p`

t−s1∗i +

N`
2∑

j=1

c`j �p`
t+s2∗j . (5)

Here, p`
t = V`h`

t + b` denotes the linear output of the `-th linear
projection layer. p̃`

t denotes the output of the `-th memory block.
N `

1 and N `
2 denotes the look-back order and lookahead order of the

`-th memory block, respectively. H(·) denotes the skip connection
within the memory block, which can be any linear or nonlinear trans-
formation. For example , if the dimensions of the memory blocks are
the same, we can just use the identity mapping as following:

p̃`−1
t = H(p̃`−1

t ) (6)

In this work, we use the identity mapping for all experiments.
For a speech signal, the information of adjacent frames have

strong redundancy due to the overlap. Similar to the dilated con-
volutional layer in wavenet [26], we add the stride factors to the
memory block in order to remove this redundancy. As in Eq.(5), s1
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Table 1. Performance (WER%) of various acoustic models trained
with CE criterion on the 2000 hours Fisher task. (166∗ is an estimate
model size based on the configuration in [27])

Model Size (MB) WER ( %)
DNN 159 14.3

BLSTM 180 10.9
BLSTM(6)[27] 166∗ 10.3

cFSMN 104 10.8
DFSMN(12) 152 9.4

and s2 are the stride for look-back and lookahead filters respectively.
For DFSMN, the total latency (τ ) is relevant to the lookahead filters
order (N `

2 ) and the stride (s2) in each memory block, which can be
calculated as Eq.(7).

τ =

L∑
`=1

N `
2 · s2 (7)

When speech recognition system is applied to some real-time appli-
cations, it is essential to control the latency. For DFSMN, we can
easily design the lookahead filters order and the stride to meet the
demand of latency. In our experiments, we will evaluate the perfor-
mance of DFSMN with different latency.

4. EXPERIMENTS

In this section, we evaluate the performance of the proposed DFSMN
with lower frame rate (LFR) on several large vocabulary speech
recognition tasks including English and Mandarin.

4.1. English Recognition Task

For the English recognition task, we use the standard Fisher (FSH)
task [28]. The training set consists of about 2000 hours data from
both the Switchboard (SWB) and Fisher (FSH). Evaluation is per-
formed in term of word error rate (WER) on the Switchboard part of
the standard NIST 2000 Hub5 evaluation set (containing 1831 utter-
ances), denoted as Hub5e00. The input speech sampled at 8kHz is
analyzed using a 25ms Hamming window with a fixed 10ms frame
shift. We computed the 72-dimensional filter-bank (FBK) features,
which includes 24 log energy coefficients distributed on a mel scale,
along with their first and second temporal derivatives. All experi-
ments in this task, we use a tri-gram language model (LM) that is
trained on 3 million words from the SWB training transcripts and 11
million words of the Fisher English Part 1 transcripts.

For the hybrid DNN-HMM baseline system, we follow the same
training procedure as described in [29] to train the conventional con-
text dependent DNN-HMM using the tied-state alignment obtained
from a MLE trained GMM-HMM baseline system. The DNN con-
tains 6 hidden layers with 2,048 rectified linear units (ReLU) per
layer. The inputs are the stacked FBK feature with a context window
size of 15 (7+1+7). For the hybrid BLSTM-HMM baseline system,
we have trained a deep BLSTM by following the same configura-
tions in [8]. The BLSTM consists of three BLSTM layers (1024
memory cells for each direction) and each BLSTM layer is followed
by a low-rank linear recurrent projection layer of 512 units. As to the
cFSMN based system, we have trained a cFSMN with architecture
being 3∗72-4×[2048-512(20, 20)]-3×2048-512-9004. The inputs
are the 72-dimensional FBK features with context window being 3
(1+1+1). The cFSMN consists of 4 cFSMN-layers followed by 3
ReLU DNN hidden layers and a linear projection layer.

Table 2. Performance (WER%) of DFSMN based acoustic model
with various architectures.

ID Model stride Size(MB) WER (%)
exp1 DFSMN(6) 1 104 10.7
exp2 DFSMN(6) 2 104 10.3
exp3 DFSMN(8) 2 120 9.6
exp4 DFSMN(10) 2 136 9.5
exp5 DFSMN(12) 2 152 9.4

All models are trained in a distributed manner using BMUF[30]
optimization on 8 GPUs and frame-level cross entropy criterion. The
initial learning rate is 0.00001, and the momentum is kept as 0.9. For
DNN and cFSMN, the mini-batch is set to be 4096. BLSTM model
is trained using the standard full-sequence BPTT with a mini-batch
of 16 sequences. The performances of the baseline models are as
shown in Table 1.

We have trained DFSMN with various architectures, which
can be denoted as 3 ∗ 72-Nf × [2048-512(N1;N2; s1; s2)]-Nd ×
2048-512-9004. Here Nf and Nd are the number of cFSMN-
layer and ReLU DNN layer respectively. In these experiments,
N1 = 20, N2 = 20, Nd = 3 is kept fixed. In the first experiment,
we have investigated the influence of the number of cFSMN-layers
and the size of the stride on the final speech recognition perfor-
mance. We have trained cFSMN with six, eight, ten and twelve
cFSMN-layers. Detailed architectures and experimental results are
listed in Table 2. Here, DFSMN(6) denotes DFSMN with Nc being
6. Results of exp1 and exp2 indicate the advantage of using stride
for the memory block. From exp2 to exp5, we can achieve consistent
performance improvement by using deeper architecture.

In Table 1, we have summarized experimental results of var-
ious systems on the 2000 hours task. Our implementation of the
BLSTM achieve a WER of 10.9% which is about 23.8% relative
improvement compared to the baseline DNN system. For compar-
ison, a well-trained BLSTM with six hidden layers (512 cells per
direction) in [27] achieves a WER of 10.3% by decoding with a 4-
gram language model. As to the proposed DFSMN, we can achieve
a WER of 9.4% by purely using the cross-entropy criterion without
any feature space or speaker space adaptation technologies, which is
a very competitive performance in this task. Compared to our base-
line BLSTM system, the proposed DFSMN can achieve an absolute
1.5% WER reduction with a smaller model size.

4.2. Mandarin Recognition Task

For the Mandarin recognition task, we have evaluated the perfor-
mance of the proposed DFSMN on two tasks, namely 5000-hour-
task and 20000-hour-task, which consist of 5000 hours and 20000
hours training data respectively. The 5000-hour-task is a subset of
the full 20000-hour-task. The training data are collected from many
domains, such as sport, tourism, game, literature et al. A test set
contains about 30 hours data is used to evaluate the performance of
all models. Evaluation is performed in term of character error rate
(CER in %). The sample rate of the data is 16kHz. Acoustic fea-
ture used for all experiments are 80-dimensional log-mel filterbank
(FBK) energies computed on 25ms window with 10ms shift.

4.2.1. 5000-hour-task

In this experiments , we evaluate the performance of DFSMN with
CD-state and CD-Phone as modeling units. For comparison, we have
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Table 3. Comparison of various acoustic models on 5000-hour-task.

Model Target Size (MB) CER % Gain
LCBLSTM CD-State 196 18.78 -
cFSMN(6) 102 17.72 +5.32%

LFR-LCBLSTM CD-Phone 220 18.92 -
LFR-cFSMN(6) 108 16.85 +11.00%
LFR-cFSMN(8) CD-Phone 124 15.80 +16.50%

LFR-cFSMN(10) 140 15.91 +15.86%
LFR-DFSMN(8) 124 15.45 +18.34%

LFR-DFSMN(10) CD-Phone 140 15.00 +20.72%

Table 4. Comparison of LFR trained LCBLSTM and DFSMN on
training time and real-time factor (RTF).

Model Training time (hr/epoch) RTF
LFR-LCBLSTM 21.62 0.4289
LFR-DFSMN(8) 6.85 0.1486

also trained the latency controlled BLSTM (LCBLSM)[23, 25] as
our baseline systems. For the CD-Phone models, we use the lower
frame rate (LFR) [24] technology with frame rate being 30ms.

For the conventional hybrid models with CD-state, an existing
cross-entropy trained hybrid CD-DNN-HMM system is used to re-
align and generate the new 10ms frame-level targets. The HMM con-
sists of 14359 CD-states. For the baseline hybrid CD-LCBLSTM-
HMM system, we follow the well-tuned configuration as in [25] to
train a LCBLSTM with Nc and Nr being 80 and 40 respectively.
The baseline LCBLSTM consists of 3 BLSTM layers (500 mem-
ory cells for each direction), 2 ReLU DNN layers (2048 hidden
nodes for each layer) and a softmax output layer. As to the cF-
SMN based model, we have trained a cFSMN with architecture be-
ing 3∗80-6× [2048-512(20, 20)]-2×2048-512-14359. The inputs
are the 80-dimensional FBK features with context window being 1
and 3 for LCBLSTM and cFSMN respectively.

As to the LFR trained hybrid models with CD-Phone, we firstly
map the 14359 CD-states to 9841 CD-Phones and then subsample
by averaging 3 one-hot target labels (LFR is 30ms), producing soft
LFR targets. For the baseline LFR trained LCBLSTM system (LFR-
LCBLSTM), we use a similar model architecture to the baseline
system while with Nc and Nr being 27 and 13 respectively. For
LFR trained cFSMN models (denoted as LFR-cFSMN), we have
trained cFSMNs with six, eight and ten cFSMN-layers, denoted as
LFR-cFSMN(6), LFR-cFSMN(8) and LFR-cFSMN(10) respectively.
The inputs are the 80-dimensional FBK features with context win-
dow being 17 and 11 for LCBLSTM and cFSMN respectively. For
the LFR trained DFSMN model (LFR-DFSMN), the model topol-
ogy is denoted as 11 ∗ 80-Nf × [2048-512(N1;N2; s1; s2)]-Nd ×
2048-512-9841. In these experiments, we set N1 = 10, N2 =
5, s1 = 2, s2 = 2, Nd = 2, and then try to evaluate the perfor-
mance of LFR-DFSMN with Nc being 8 and 10, denoted as LFR-
DFSMN(8) and LFR-DFSMN(10) respectively.

All models are trained in a distributed manner using BMUF[30]
optimization on 8 GPUs and frame-level cross entropy criterion.
We have listed all experimental results in Table 3 for comparison.
Compared to the baseline CD-state trained LCBLSTM, the cFSMN
can achieve 5.32% relative improvement. The LFR-cFSMN with
CD-Phone can achieve about 0.9% absolute CER reduction com-
pared to the cFSMN with CD-state, which shows the benefit from
the modeling units. Both cFSMN and DFSMN can benefit from
the deep architecture, and DFSMN can outperform the cFSMN with

Table 5. Comparison of various acoustic models on 20000-hour-
task.(“1 and 0” denotes the lookahead filter order of the odd layer
and even layer is 1 and 0 respectively).

Model N2 Delay Frame CER% Gain
LFR-LCBLSTM - 40 16.05 -

2 20 12.67 +21.06%
LFR-DFSMN(10) 1 10 12.94 +19.38%

1 and 0 5 13.38 +16.64%

the similar model topology. However, too deep cFSMN (such as 10
layers) will suffer from the performance degradation while the DF-
SMN can achieve consistent improvement. Moreover, the proposed
LFR-DFSMN can significantly outperform the LFR-LCBLSTM
with about 20% relative CER reduction. We may train much deeper
LCBLSTM to achieve better performance, such as the Highway-
LSTM in [31]. However, the improvement is limited if without
increasing the total parameters, which only about 2% relatively
improvement. In Table 4, we have compared the training time and
decoding real-time factor of LFR trained DFSMN and LCBLSTM.
Results shown that DFSMN can achieve about 3 times speedup in
training and decoding real-time factor (RTF).

4.2.2. 20000-hour-task

In this task, we try to compare the performance of LFR-LCBLSTM
and LFR-DFSMN on a very large corpus that consists of 20000
hours training data. For LFR-LCBLSTM, we use the same con-
figurations to the 5000-hour-task. For LFR-DFSMN, we have
trained DFSMN with model topology being 11 ∗ 80− 10× [2048−
512(5;N2; 2; 1)]-2×2048-512-9841, denoted as LFR-DFSMN(10).
We fix the number of FSMN layers(Nf ), DNN layers (Nd), look-
back filter order (N1) and try to investigate the influence of looka-
head filter order (N2) to the performance. All models are trained
in a distributed manner using BMUF[30] optimization on 16 GPUs
and frame-level cross entropy criterion.

For the baseline LFR-LCBLSTM with Nc = 27 and Nr = 13,
the number of delay frame for time instance is 40. For LFR-DFSMN,
we can control the number of delay frame by setting the lookahead
filter order. Experimental results in Table 5 have shown that when
reduce the number of delay frame from 20 to 5, we only loss about
5% performance. As a result, the latency is about 150ms (30ms ∗ 5)
which is suitable for real-time applications. Finally, the proposed
DFSMN with 20 frames latency can achieve more than 20% relative
improvement compared to the LCBLSTM with 40 frames latency.

5. CONCLUSIONS

We presented an improved FSMN structure namely Deep-FSMN
(DFSMN), and applied it to many large speech recognition tasks.
The DFSMN can significantly benefit from the skip connections and
the deeper architecture. Experimental results shown that the DF-
SMN consistently outperform the BLSTM with dramatic gain, espe-
cially when combined with the lower frame rate. In the 2000 hours
Fisher English task, our proposed DFSMN can achieve a WER of
9.4% by purely using cross-entropy criterion without any adaptation
technology. In a 20000 hours Mandarin recognition task, the LFR
trained DFSMN can achieve more than 20% relative improvement
compared to the LFR trained LCBLSTM while with smaller model
size and lower latency. Experiments results suggest that the DFSMN
may be a strong alternative to BLSTM for acoustic modeling.
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