
HIGH ORDER RECURRENT NEURAL NETWORKS FOR ACOUSTIC MODELLING

C. Zhang & P. C. Woodland

Cambridge University Engineering Dept., Trumpington St., Cambridge, CB2 1PZ U.K.
{cz277,pcw}@eng.cam.ac.uk

ABSTRACT

Vanishing long-term gradients are a major issue in training stan-
dard recurrent neural networks (RNNs), which can be alleviated by
long short-term memory (LSTM) models with memory cells. How-
ever, the extra parameters associated with the memory cells mean an
LSTM layer has four times as many parameters as an RNN with the
same hidden vector size. This paper addresses the vanishing gradi-
ent problem using a high order RNN (HORNN) which has additional
connections from multiple previous time steps. Speech recognition
experiments using British English multi-genre broadcast (MGB3)
data showed that the proposed HORNN architectures for rectified
linear unit and sigmoid activation functions reduced word error rates
(WER) by 4.2% and 6.3% over the corresponding RNNs, and gave
similar WERs to a (projected) LSTM while using only 20%–50% of
the recurrent layer parameters and computation.

1. INTRODUCTION

A recurrent neural network (RNN) is an artificial neural network
layer where hidden layer outputs from the previous time step form
part of the input used to process the current time step [1, 2]. This al-
lows information to be preserved through time and is well suited to
sequence processing problems, such as acoustic and language mod-
elling for automatic speech recognition [3, 4]. However, training
RNNs with sigmoid activation functions by gradient descent can
be difficult. The key issues are exploding and vanishing gradients
[5], i.e., the long-term gradients, which are back-propagated through
time, can either continually increase (explode) or decrease to zero.
This causes RNN training to either fail to capture long-term temporal
relations or for standard update steps to put parameters out of range.

Many methods have been proposed to solve the gradient explod-
ing and vanishing problems. While simple gradient clipping has
been found to work well in practice to prevent gradient exploding
[4], circumventing vanishing gradients normally requires more so-
phisticated strategies [6]. For instance [7] uses Hessian-Free train-
ing which makes use of second-order derivative information. Mod-
ifying the recurrent layer structure is another approach. The use of
both rectified linear unit (ReLU) and sigmoid activation functions
with trainable amplitudes were proposed to maintain the magnitude
of RNN long-term gradients [8–10]. A gating technique is used in
the long short-term memory (LSTM) model where additional pa-
rameters implement a memory circuit which can remember long-
term information from the recurrent layer [11]. A model similar
to the LSTM is the gated recurrent unit [12]. More recently, ad-
ditional residual [13] and highway connections [14] were proposed
to train very deep feed-forward models, which allows gradients to
pass more easily through many layers. Various similar ideas have
been applied to recurrent models [15–20]. Among these approaches,

Thanks to Mark Gales and the MGB3 team for the MGB3 setup used.

the LSTM has recently become the dominant type of recurrent ar-
chitecture. However LSTMs, due to the extra parameters associated
with gating, use four times more parameters as standard RNNs with
the same hidden layer size, which significantly increases storage and
computation in both training and testing.

In this paper, we propose another RNN modification, the high
order RNN (HORNN), as an alternative to the LSTM. It handles
vanishing gradients by adding connections from hidden state values
at multiple previous time steps to the RNN input. By interpreting
the RNN layer hidden vector as a continuous valued hidden state,
the connections are termed high order since they introduce depen-
dencies on multiple previous hidden states. Acoustic modelling us-
ing HORNNs is investigated for both sigmoid and ReLU activation
functions. In the sigmoid case, it is found that additional high order
connections are beneficial. Furthermore, analogous to the projected
LSTM (LSTMP) [22], a linear recurrent projection layer can be used
by HORNNs to reduce the number of parameters, which results in
the projected HORNN (HORNNP). Experimental results show that
the HORNN/HORNNP (both sigmoid and ReLU) have similar word
error rates (WERs) to LSTM/LSTMP models with the same hidden
vector size, while using fewer than half the parameters and computa-
tion. Furthermore, HORNNs were also found to outperform RNNs
with residual connections in terms of both speed and WER.

This paper is organised as follows. Section 2 reviews RNN and
LSTM models. The (conditional) Markov property of RNNs is de-
scribed in Sec. 3, which leads to HORNNs and architectures for both
sigmoid and ReLU activation functions. The experimental setup and
results are given in Sec. 4 and Sec. 5, followed by conclusions.

2. RNN AND LSTM MODELS

In this paper, an RNN refers to an Elman network [2] that produces
its output hidden vector at step t, ht, based on the previous output
ht−1 and the current input xt by

ht = f(at) = f(Wxt + Uht−1 + b), (1)

where W and U are the weights, b is the bias, and f(·) and at are
the activation function and its input activation value. In general, ht

is processed by a number of further layers to obtain the final network
output. It is well known that when f(·) is the sigmoid denoted σ(·),
RNNs suffer from the vanishing gradient issue since

∂σ(at)

∂at
= σ (at)(1− σ(at)) 6

1

4
,

which enforces gradient magnitute reductions in backpropagation
[3]. Note that ReLU RNNs suffer less from this issue.

In contrast to a standard RNN, the LSTM model resolves gra-
dient vanishing by using an additional linear state ct at each step
of the sequence, which can be viewed as a memory cell. At each

5849978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

step, a new cell candidate c̃t is created to encode the information
from the current step. ct is first updated by interpolating ct−1 with
c̃t based on the forget gate ft and input gate it, and then converted
to the LSTM hidden state by transforming with hyperbolic tangent
(tanh) and scaling by the output gate ot. This procedure simulates a
memory circuit where ft, it, and ot are analogous to its logic gates
[11]. More specifically, an LSTM layer step t is evaluated as

it = σ(Wixt + Uiht−1 + Vi � ct−1 + bi),

ft = σ(Wfxt + Ufht−1 + Vf � ct−1 + bf),

c̃t = tanh(Wcxt + Ucht−1 + bc), ct = ft � ct−1 + it � c̃t,

ot = σ(Woxt + Uoht−1 + Vo � ct + bo),

ht = ot � tanh(ct),

where � represents element-wise product, and the V matrices are
diagonal which serve as a “peephole”. Although LSTMs work very
well on a large variety of tasks, it is computationally very expensive.
The representations for each temporal step, c̃t, are extracted in the
same way as the RNN ht. However, the additional cost of finding ct
over c̃t, requires three times the computation and parameter storage
since it, ft, and ot all need to be calculated.

3. HIGH ORDER RNN ACOUSTIC MODELS

In this section, HORNNs are proposed by relaxing the first-order
Markov conditional independence constraint.

3.1. Markov Conditional Independence

The posterior probability of the T frame label sequence y1:T given
the T frame input sequence x1:T can be found by integrating over
all possible continuous hidden state sequences h̃1:T

P (y1:T |x1:T) =

∫
P (y1:T |h̃1:T ,x1:T)p(h̃1:T |x1:T) dh̃1:T

=

∫ T∏
t=1

P (yt|y1:t−1, h̃1:T ,x1:T)p(h̃t|h̃1:t−1,x1:T) dh̃1:T .

When implemented using an RNN,

P (yt|y1:t−1, h̃1:T ,x1:T) = P (yt|h̃t),

which is produced by the layers after the RNN layer. From Eqn. (1),
h̃t depends only on h̃t−1 and xt, i.e.,

p(h̃t|h̃1:t−1,x1:T) = p(h̃t|h̃t−1,xt). (2)

Since the initial hidden state is given (often set to h0 = 0), all
subsequent states h1:T are determined by Eqn. (1), which means
p(h̃t|ht−1,xt) is a Kronecker delta function

p(h̃t|ht−1,xt) =

{
1 if h̃t = ht

0 otherwise
.

Hence P (y1:T |x1:T) =
∏T

t=1 P (yt|ht = f(Wxt +Uht−1 +b)).
Eqn. (2) is the 1st-order Markov conditional independence prop-

erty [23]. It means that the current state ht depends only on its
immediately preceding state ht−1 and the current input xt. This
property differs from the 1st-order Markov property by also condi-
tioning on xt.1 Note that this property also applies to bidirectional
RNNs [24], which is easy to show by defining a new hidden state
hbid
t = {hfwd

t ,hbwd
t }, where hfwd

t and hbwd
t are the forward and back-

ward RNN hidden states.
1For language modelling, ht has the standard Markov property as the

RNN models P (y1:T) without conditioning on x1:T .

3.2. HORNNs for Sigmoid and ReLU Activation Functions

In this paper, the gradient vanishing issue is tackled by relaxing
the first-order Markov conditional independence constraint. Hence,
not only the direct preceding state ht−1 but also previous states
ht−n(n > 1) are used when calculating ht. This adds additional
high order connections to the RNN architecture and results in a
HORNN. From a training perspective, including high order states
creates shortcuts for backpropagation to allow additional long-term
information to flow more easily. Specifically, the gradients w.r.t.
ht−1 of a general n-order RNN can be obtained by

∂F
∂ht−1

=

n∑
i=1

∂F
∂ht−i−1

∂ht−i−1

∂ht−1
, (3)

where F is the training criterion. For n > 1, Eqn. (3) sums multiple
terms to prevent the gradient vanishing. From an inference (testing)
perspective, an RNN assumes sufficient past temporal information
has been embedded in the representation ht−1, but using a fixed
sized ht−1, means that information from distant long-term steps may
not be properly integrated with new short-term information. The
HORNN architecture allows more direct access to the past long-term
information.

There are many alternative ways of using ht−n in the calculation
of ht in the HORNN framework. This paper assumes that the high
order connections are linked to the input at step t. It was found to be
sufficient to use only one high order connection at the input, i.e.

ht = f(Wxt + U1ht−1 + Unht−n + b). (4)

Here ht−n can be viewed as a kind of “memory” whose temporal
resolution is modified by Un. From our experiments the structure in
Eqn. (4) allowed ReLU HORNNs to give similar WERs to LSTMs.
However, when using sigmoid HORNNs, a slightly different struc-
ture is needed to reach a similar WER. This has an extra high order
connection from ht−m to the sigmoid function input, i.e.

ht = f(Wxt + U1ht−1 + Unht−n + ht−m + b). (5)

Here, ht−m is directly added to the sigmoid input without impacting
the temporal resolution at t since ht−m is from a previous sigmoid
output. Eqns. (4) and (5) are used for ReLU and sigmoid HORNNs
throughout the paper.

3.3. Parameter Control using Matrix Factorisation

Comparing Eqns. (4) and (5) to Eqn. (1), HORNN increases the
number of RNN layer parameters from (Dx + Dh)Dh + Dh to
(Dx + 2Dh)Dh + Dh, where Dx and Dh are the sizes of xt and
ht. One method to reduce the increase in parameters is to project the
hidden state vectors to some a dimension Dp with a recurrent linear
projection P [22]. This factorises U1 and Un in Eqns. (4) and (5)
to Up1P and UpnP with a low-rank approximation. The projected
HORNNs (denoted by HORNNP) for ReLU and sigmoid activations
are hence defined as

ht = f(Wxt + Up1Pht−1 + UpnPht−n + b) (6)

and

ht = f(Wxt + Up1Pht−1 + UpnPht−n + ht−m + b), (7)

and the number of parameters used isDhDp+(Dx+2Dp)Dh+Dh.
The resulting parameter reduction ratio is approximately 2Dh/3Dp

(given Dh > Dp � Dx). Note that the same idea was used by

5850

the projected LSTM (LSTMP) to factorise Ui, Uf , Uc, and Uo

[22], which reduces the number of LSTM parameters from 4(Dx +
Dh)Dh + 7Dh to DhDp + 4(Dx +Dp)Dh + 7Dh.

Next we compare the computational complexity of LSTMs
and HORNNs. Given that multiplying a l × m matrix by a
m × n matrix (l 6= m 6= n) requires lmn multiply-adds, and
ignoring all element-wise operations, the testing complexity for a
HORNNP layer is O(T (Dx + 3Dp)Dh), whereas for an LSTMP
it is O(TDhDp + 4T (Dx +Dp)Dh). This shows that HORNNPs
use less than 3/5 of the calculations of LSTMPs. It has been found
that HORNNPs often result in a 50% speed up over LSTMPs in our
current HTK implementation [25–27].

3.4. Related Work

After independently developing the HORNN for acoustic modelling,
we found that similar ideas had previously been applied to rather
different tasks [28–32]. However, both the research focus and model
architectures were different to this paper. In particular, the model
proposed in [28, 31] is equivalent to Eqn. (4) without subsampling
the high order hidden vectors, and [32] applied that model to TIMIT
phone recognition. Furthermore, previous studies didn’t discuss the
high order connections in the Markov property framework.

Adding ht−m to the input of the sigmoid function in Eqn. (5)
is similar to the residual connection in residual networks [13]. A
residual RNN (ResRNN) with a recurrent kernel depth of two (d =
2) can be written as

ht = f(Ud2f(Wxt + Ud1ht−1 + b) + ht−m), (8)

where m = 1 [17]. Another related model is the recent residual
memory network [21], which can be viewed as an unfolded HORNN
defined in Eqn. (4) with U1 and b being zero, W being distinct un-
tied parameters in each unfolded layer, and n > 1 being any positive
integer. In addition, since highway networks [14] can be viewed
as a generalised form of the residual networks, highway RNNs and
LSTMs are also related to this work [15, 19]. Note that it is also
possible to combine the residual and highway ideas with HORNNs
by increasing the recurrent depth.

4. EXPERIMENTAL SETUP

The proposed HORNN models were evaluated by training systems
on multi-genre broadcast (MGB) data from the MGB3 speech recog-
nition challenge task [33, 34]. The audio is from BBC TV pro-
grammes covering a range of genres. A 275 hour (275h) full training
set was selected from 750 episodes where the sub-titles have a phone
matched error rate< 40% compared to the lightly supervised output
[35] which was used as training supervision. A 55 hour (55h) subset
was sampled at the utterance level from the 275h set. A 63k word
vocabulary [36] was used with a trigram word level language model
(LM) estimated from both the acoustic transcripts and a separate 640
million word MGB subtitle archive. The test set, dev17b, contains
5.55 hours of audio data and 5,201 manually segmented utterances
from 14 episodes of 13 shows. This is a subset of the official full de-
velopment set (dev17a) with data that overlaps training and test sets
excluded. System outputs were evaluated with confusion network
decoding (CN) [37] as well as 1-best Viterbi decoding.

All experiments were conducted with an extended version of
HTK 3.5 [25, 26]. The LSTM was implemented following [22]. A
40d log-Mel filter bank analysis was used and expanded to an 80d
vector with its ∆ coefficients. The data was normalised at the utter-
ance level for mean and at the show-segment level for variance [38].

The inputs at each recurrent model time step were single frames de-
layed for 5 steps [22, 39]. All models were trained using the cross-
entropy criterion and frame-level shuffling used. All recurrent mod-
els were unfolded for 20 time steps, and the gradients of the shared
parameters were normalised by dividing by the sharing counts [26].
The maximum parameter changes were constrained by update value
clipping with a threshold of 0.32 for a minibatch with 800 samples.

About 6k/9k decision tree clustered triphone tied-states along
with GMM-HMM/DNN-HMM system training alignments were
used for the 55h/275h training sets. One hidden layer with the same
dimension as ht was added between the recurrent and output layers
to all models. The NewBob+ learning rate scheduler [26, 27] was
used to train all models with the setup from our previous MGB
systems [38]. An initial learning rate of 5 × 10−4 was used for all
ReLU models, while an initial rate of 2 × 10−3 was used to train
all the other models. Since regularisation plays an important role in
RNN/LSTM training, weight decay factors were carefully tuned to
maximise the performance of each system.

5. EXPERIMENTAL RESULTS

5.1. 55 Hour Single Layer HORNN Experiments

Initial experiments studied various HORNN architectures in order
to investigate suitable values of n for the ReLU model in Eqn. (4),
and for both m and n for the sigmoid model in Eqn. (5). To save
computation, the 55h subset was used for training. All models had
one recurrent layer with the ht size fixed to 500. An LSTM and
a standard RNN were created as baselines, which had 1.16M and
0.29M parameters in the recurrent layers respectively. A ResRNN,
defined by Eqn. (8) was also tested as an additional baseline using
both ReLU and sigmoid functions.2 ResRNNs had the same number
of parameters (0.54M) as the HORNNs. Note that rather than the
standard case with m = 1 [17], m ∈ [1, 4] were examined which
falls into the high order framework when m > 1. For HORNNs,
n ∈ [2, 6] were tested; m was fixed to 2 for all sigmoid HORNNs.
From the results shown in Figure 1, the LSTM gives lower WERs
than a standard RNN, but the ReLU ResRNN with m set to 1 or 2
had a similar WER to the LSTM.

ReLU HORNNs gave WERs at least as low as the LSTM and the
best ReLU ResRNN systems. Sigmoid HORNNs gave better WERs
than sigmoid ResRNNs and similar WERs to those from the LSTM.
The performance can be further improved by using p-sigmoid [40]
as the HORNN activation function which associates a linear scaling
factor to each recurrent layer output unit and makes it more similar
to a ReLU. In addition, HORNNs were faster than both LSTM and
ResRNNs. ResRNNs were slightly slower than HORNNs since the
second matrix multiplication depends on the first one at each recur-
rent step. For the rest of the experiments, all ReLU HORNNs used
n = 4 , and all sigmoid HORNNs used m = 1 and n = 2.

5.2. Projected and Multi-Layered HORNN Results

Next, projected LSTMs and projected HORNNs were compared.
First, Dh (the size of ht) and Dp (the projected vector size) were
fixed to 500 and 250 respectively for the single recurrent layer (1L)
LSTMP and HORNNP models. The LSTMP baseline L55h

1 had
0.79M parameters and HORNNP system S55h

1 and R55h
1 had 0.42M

parameters. From Table 1, the HORNNPs have similar WERs to
the LSTMP. By further reducing Dp to 250, the HORNN systems,
S55h
2 and R55h

2 , reduced the number of parameters to 0.23M and gave

2This is also the first time to apply such ResRNNs to acoustic modelling.

5851

m
=

1

m
=

2

m
=

3

m
=

4

m
=

1

m
=

2

m
=

3

m
=

431

32

33

34

35

36

B
a
se

lin
e
 S

y
st

e
m

 %
W

E
R

32.9

32.2

33.9

33.2

35.4

34.3

32.7
32.9

33.1 33.0

32.1 32.2 32.3 32.3

34.3

33.5

33.9 33.8

33.4

32.7

33.1 33.1

LSTM tg

LSTM cn

ReLU RNN tg

ReLU RNN cn

sigmoid RNN tg

sigmoid RNN cn

ReLU ResRNN tg

ReLU ResRNN cn

sigmoid ResRNN tg

sigmoid ResRNN cn

n
=

2

n
=

3

n
=

4

n
=

5

n
=

6

m
=

1
n
=

2

m
=

1
n
=

3

m
=

1
n
=

4

m
=

1
n
=

5

m
=

1
n
=

6

m
=

1
n
=

2

31

32

33

34

35

36

H
O

R
N

N
 S

y
st

e
m

 %
W

E
R

32.7 32.7
32.5

32.8

32.5

31.9 31.9 31.8 31.9 31.8

33.1
33.3

32.9
33.1

33.3

32.2

32.6

32.3 32.3
32.5

32.9

32.0

ReLU HORNN tg

ReLU HORNN cn

sigmoid HORNN tg

sigmoid HORNN cn

p-sigmoid HORNN tg

p-sigmoid HORNN cn

Fig. 1. %WERs of 55h systems on dev17b. Systems use a trigram
LM with Viterbi decoding (tg) or CN decoding (cn).

similar WERs to LSTM and LSTMP (L55h
1) with only 20% and 29%

of the recurrent layer parameters.
The values of Dh and Dp for HORNNs were increased to 800

and 400 respectively to make the overall number of recurrent layer
parameters (1.02M) closer to that of the 500d LSTM (1.16M). This
produced system S55h

3 and R55h
3 . The LSTMP was also modified to

Dh = 600 and Dp = 300 to have 1.10M parameters. From the
results in Table 1, S55h

3 and R55h
3 both outperformed L55h

2 by a margin
since the 800d representations embed more accurate temporal infor-
mation than with 600d. The p-sigmoid function was not used for
HORNNPs since the linear projection layer also scales ht.

Finally, the LSTMP and HORNNP were compared by stacking
another recurrent layer. With two recurrent layers (2L) ofDh = 500
and Dp = 250, the 2L HORNNP systems S55h

4 and R55h
4 had 0.92M

parameters and still produced similar WERs to the 2L LSTMP sys-
tem L55h

3 (with 1.91M parameters). These results indicate that rather
than spending most of the calculations on maintaining the LSTM
memory cell, it is more effective to use HORNNs and use the com-
putational budget for extracting better temporal representations us-
ing wider and deeper recurrent layers.

5.3. Experiments on 275 Hour Data Set

To ensure that the previous results scale to a significantly larger train-
ing set, some selected LSTMP and HORNNP systems were built on

ID System Dh Dp tg cn

L55h
1 1L LSTMP 500 250 32.9 32.1

L55h
2 1L LSTMP 600 300 32.7 32.0

L55h
3 2L LSTMP 500 250 31.3 30.6

S55h
1 1L sigmoid HORNNP 500 250 32.8 31.9

S55h
2 1L sigmoid HORNNP 500 125 33.0 32.1

S55h
3 1L sigmoid HORNNP 800 400 31.6 30.9

S55h
4 2L sigmoid HORNNP 500 250 31.4 30.7

R55h
1 1L ReLU HORNNP 500 250 32.0 31.4

R55h
2 1L ReLU HORNNP 500 125 32.5 31.8

R55h
3 1L ReLU HORNNP 800 400 31.4 30.7

R55h
4 2L ReLU HORNNP 500 250 31.4 30.7

Table 1. %WERs for various 55h system on dev17b. Systems use a
trigram LM with Viterbi decoding (tg) or CN decoding (cn).

the full 275h set. Here Dh and Dp were set to 1000 and 500, which
increased the number of recurrent layer parameters to better model
the full training set. From Table 2, for both single recurrent layer
and two recurrent layer architectures, HORNNs still produced simi-
lar WERs to the corresponding LSTMPs. This validates our previous
finding on a larger data set that the proposed HORNN structures can
work as well as the widely used LSTMs on acoustic modelling by us-
ing far fewer parameters. In addition, along with the multi-layered
structure, HORNNs can also be applied to other kinds of recurrent
models by replacing RNNs and LSTMs, such as the bidirectional
[24] and grid [39, 41, 42] structures etc. Finally, a 7 layer (7L) sig-
moid DNN system, D275h

1 , was built following [38] as a reference.

ID System Dh Dp tg cn

L275h
1 1L LSTMP 1000 500 26.5 26.0

S275h
1 1L sigmoid HORNNP 1000 500 26.4 25.8

R275h
1 1L ReLU HORNNP 1000 500 26.4 25.9

L275h
3 2L LSTMP 1000 500 25.7 25.2

S275h
4 2L sigmoid HORNNP 1000 500 25.6 25.2

R275h
4 2L ReLU HORNNP 1000 500 25.3 25.0

D275h
1 7L sigmoid DNN 1000 28.4 27.5

Table 2. %WERs for a selection of 275h system on dev17b. Systems
use a trigram LM with Viterbi decoding (tg) or CN decoding (cn).

6. CONCLUSIONS

This paper proposed the use of HORNNs for acoustic modelling to
address the vanishing gradient problem in training recurrent neural
networks. Two different architectures were proposed to cover both
ReLU and sigmoid activation functions. These yielded 4%-6% WER
reductions over the standard RNNs with the same activation func-
tion. Furthermore, additional structures were investigated: reducing
the number of HORNN parameters with a linear recurrent projected
layer; and adding another recurrent layer. In all cases, compared
to the projected LSTMs and the residual RNNs, it was shown that
HORNNs gave similar WER performance while being significantly
more efficient in computation and storage. When the savings in pa-
rameter number and computation are used to implement wider or
deeper recurrent layers, (projected) HORNNs gave a 4% relative re-
duction in WER over the comparable (projected) LSTMs .

5852

7. REFERENCES

[1] D.E. Rumelhart, J.L. McClelland, & the PDP Research Group Parallel
Distributed Processing: Explorations in the Microstructure of Cogni-
tion, Volume 1: Foundations, MIT Press, 1986.

[2] J.L. Elman, “Finding structure in time”, Cognitive Science, vol. 14, pp.
179–211, 1990.

[3] T. Robinson, M. Hochberg and S. Renals. “The use of recurrent neural
networks in continuous speech recognition”, In Automatic Speech and
Speaker Recognition, pp. 233–258, Springer, 1996.

[4] T. Mikolov, Statistical Language Models based on Neural Networks,
Ph.D. thesis, Brno University of Technology, Brno, Czech Republic,
2012.

[5] Y. Bengio, P. Simard, & P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult”, IEEE Transactions on Neural
Networks, vol. 5, pp. 157–166, 1994.

[6] R. Pascanu, T. Mikolov, & Y. Bengio, “On the difficulty of training
recurrent neural networks”, Proc. ICML, Atlanta, 2013.

[7] I. Sutskever, J. Martens, & G. Hinton, “Generating text with recurrent
neural networks”, Proc. ICML, New York, 2011.

[8] E. Salinas & L.F. Abbott, “A model of multiplicative neural responses
in parietal cortex”, Proc. National Academy of Science U.S.A., vol. 93,
pp. 11956–11961, 1996.

[9] R.L.T. Hahnloser, “On the piecewise analysis of networks of linear
threshold neurons”, Neural Networks, vol. 11, pp. 691–697, 1998.

[10] S.L. Goh & D.P. Mandic “Recurrent neural networks with trainable
amplitude of activation functions”, Neural Networks, vol. 16, pp. 1095–
1100, 2003.

[11] S. Hochreiter & J. Schmidhuber, “Long short-term memory”, Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[12] J. Chung, C. Gulcehre, K.H. Cho, & Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling”, arXiv.org,
1412.3555, 2014.

[13] K. He, X. Zhang, S. Ren, & J. Sun, “Deep residual learning for image
recognition”, Proc. CVPR, Las Vegas, 2016.

[14] R.K. Srivastava, K. Greff, & J. Schmidhuber, “Highway networks”,
arXiv.org, 1505.00387, 2015.

[15] J.G. Zilly, R.K. Srivastava, J. Koutnı́k, & J. Schmidhuber, “Recurrent
highway networks”, arXiv.org, 1607.03474, 2016.

[16] Y. Zhang, G. Chen, D. Yu, K. Yao, S. Khudanpur, & J. Glass, “Highway
long short-term memory RNNs for distant speech recognition”, Proc.
ICASSP, Shanghai, 2016.

[17] Y. Wang & F. Tian, “Recurrent residual learning for sequence classifi-
cation”, Proc. EMNLP, Austin, 2016.

[18] A. van den Oord, N. Kalchbrenner, & K. Kavukcuoglu, “Pixel recurrent
neural networks”, Proc. ICML, New York, 2016.

[19] G. Pundak & T.N. Sainath, “Highway-LSTM and recurrent highway
networks for speech recognition”, Proc. Interspeech, Stockholm, 2017.

[20] J. Kim, M. El-Khamy, & J. Lee, “Residual LSTM: Design of a deep re-
current architecture for distant speech recognition”, Proc. Interspeech,
Stockholm, 2017.

[21] M.K. Baskar, M. Karafiát, L. Burget, K. Veselý, F. Grézl, &
J.H. Černocký, “Residual memory networks: Feed-forward approach
to learn long-term temporal dependencies”, Proc. ICASSP, New Or-
leans, 2017.

[22] H. Sak, A. Senior, & F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling”, Proc.
Interspeech, Singapore, 2014.

[23] Y. Bengio & P. Frasconi, Creadit assignment through time: Alternatives
to backpropagation, Advances in NIPS 6, Hong Kong, 1993.

[24] M. Schuster & K.K. Paliwal, “Bidirectional recurrent neural networks”,
IEEE Transactions on Signal Processing, vol. 45, pp. 2673–2681, 1997.

[25] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey, A. Ragni, V. Valtchev,
P. Woodland, & C. Zhang, The HTK Book (for HTK version 3.5), Cam-
bridge University Engineering Department, 2015.

[26] C. Zhang & P.C. Woodland, “A general artificial neural network exten-
sion for HTK”, Proc. Interspeech, Dresden, 2015.

[27] C. Zhang, Joint Training Methods for Tandem and Hybrid Speech
Recognition Systems using Deep Neural Networks, Ph.D. thesis, Uni-
versity of Cambridge, Cambridge, UK, 2017.

[28] T. Lin, B.G. Horne, P. Tiňo, & C. Lee Giles, “Learning long-term
dependencies in NARX recurrent neural networks”, IEEE Transactions
on Neural Networks, vol. 7, pp. 1329–1338, 1996.

[29] P. Tiňo, M. Čerňanský, & L. Beňušková, “Markovian architectural bias
of recurrent neural networks”, IEEE Transactions on Neural Networks,
vol. 15, pp. 6–15, 2004.

[30] I. Sutskever & G. Hinton, “Temporal-kernel recurrent neural net-
works”, Neural Networks, vol. 23, pp. 239–243, 2010.

[31] R. Soltani & H. Jiang, “Higher order recurrent neural networks”,
arXiv.org, 1605.00064, 2016.

[32] H. Huang & B. Mak, “To improve the robustness of LSTM-RNN
acoustic models using higher-order feedback from multiple histories”,
Proc. Interspeech, Stockholm, 2017.

[33] http://www.mgb-challenge.org

[34] P. Bell, M.J.F. Gales, T. Hain, J. Kilgour, P. Lanchantin, X. Liu, A. Mc-
Parland, S. Renals, O. Saz, M. Wester, & P.C. Woodland, “The
MGB challenge: Evaluating multi-genre broadcast media transcrip-
tion”, Proc. ASRU, Scottsdale, 2015.

[35] P. Lanchantin, M.J.F. Gales, P. Karanasou, X. Liu, Y. Qian, L. Wang,
P.C. Woodland, & C. Zhang, “Selection of Multi-Genre Broadcast data
for the training of automatic speech recognition systems”, Proc. Inter-
speech, San Francisco, 2016.

[36] K. Richmond, R. Clark, & S. Fitt, “On generating Combilex pronuncia-
tions via morphological analysis”, Proc. Interspeech, Makuhari, 2010.

[37] G. Evermann & P. Woodland, “Large vocabulary decoding and con-
fidence estimation using word posterior probabilities”, Proc. ICASSP,
Istanbul, 2000.

[38] P.C. Woodland, X. Liu, Y. Qian, C. Zhang, M.J.F. Gales, P. Karana-
sou, P. Lanchantin, & L. Wang, “Cambridge University transcription
systems for the Multi-Genre Broadcast challenge”, Proc. ASRU, Scotts-
dale, 2015.

[39] B. Li & T.N. Sainath, “Reducing the computational complexity of
twodimensional LSTMs”, Proc. Interspeech, Stockholm, 2017.

[40] C. Zhang & P.C. Woodland, “Parameterised sigmoid and ReLU hidden
activation functions for DNN acoustic modelling”, Proc. Interspeech,
Dresden, 2015.

[41] N. Kalchbrenner, I. Danihelka, & A. Graves, “Grid long short-term
memory”, Proc. ICLR, San Juan, 2016.

[42] F.L. Kreyssig, C. Zhang, & P.C. Woodland, “Improved TDNNs using
deep kernels and frequency dependent Grid-RNNs”, Proc. ICASSP,
Calgary, 2018.

5853

