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ABSTRACT

This paper describes a series of experiments with neural net-
works containing long short-term memory (LSTM) [1] and
feedforward sequential memory network (FSMN) [2, 3, 4]
layers trained with the connectionist temporal classifica-
tion (CTC) [5] criteria for acoustic modeling. We propose
using a hybrid LSTM/FSMN (FLMN) architecture as an
enhancement to conventional LSTM-only acoustic models.
The addition of FSMN layers allows the network to model a
fixed size representation of future context suitable for online
speech recognition. Our experiments show that FLMN acous-
tic models significantly outperform conventional LSTM. We
also compare the FLMN architecture with other methods of
modeling future context. Finally, we present a modifica-
tion of the FSMN architecture that improves performance by
reducing the width of the FSMN output.

Index Terms— Long Short Term Memory, Feedforward
Sequential Memory Networks, Connectionist Temporal Clas-
sification, future context, online speech recognition.

1. INTRODUCTION

Effective acoustic modeling for speech recognition requires
taking into account the acoustic and phonemic context of the
sound being recognized. This is due to the presence of co-
articulation and other continuous-speech phenomena in hu-
man speech production. Much effort has been invested to
train speech models that are sensitive to contextual informa-
tion in the speech signal.

With the recent resurgence of deep neural networks
(DNNs), these architectures are currently at the heart of
most modern algorithms for acoustic modeling in automatic
speech recognition. For ordinary feedforward neural net-
works, it is customary to provide a rudimentary measure
of contextual information by “stacking” together consecu-
tive frames of speech features. In recent years it has been
demonstrated that cross entropy (CE) trained recurrent neural
network (RNN) architectures such as long short term mem-
ory (LSTM) [1, 6, 7], which are context-aware due to their
recurrence mechanism, have been shown to perform better
than conventional feedforward neural networks. In the basic
RNN approach, the network receives the sequence of feature
vectors and attempts to label each feature vector with the cor-

rect phonetic label by using the information about the feature
vector itself, as well as the recurrent “state” in the network’s
memory. This recurrent state allows the network to be sensi-
tive to information seen at previous time steps in the feature
stream. A modification called bidirectional RNN allows the
network to consider both forward and the backward contex-
tual information in its internal state representation. However,
because of the need to process the feature sequence in re-
verse, this approach is not suitable for streaming applications
such as voice search, where partial results are presented to the
users as they are speaking. Additionally, CE trained networks
have no concept of trying to learn the actual sequence of
labels that must be produced to generate a correct transcript.

Even more recently, connectionist temporal classification
(CTC) [5, 8] techniques have become adopted to remedy
these limitations of CE training. CTC-trained models attempt
to learn the sequence of labels that is required to produce
the correct transcript, but do not attempt to model the label
that should be given to a specific feature vector, nor do they
attempt to output the labels in a way that is aligned tempo-
rally with the speech signal. As a result, they are able to use
as much or as little future context as necessary, by choos-
ing to defer outputting the label. This characteristic of CTC
allows models trained with these techniques to outperform
conventionally trained models (e.g., ones trained with the CE
criterion). However, because the label sequence can be ar-
bitrarily shifted from the input features corresponding to the
labels, CTC models are difficult to use in a streaming setting.
In such situations, modifications to the algorithm, such as
enforcing a constraint of a maximum delay between features
and corresponding output labels, are necessary [8] to make
CTC models operate with acceptable latency characteristics.

Feedforward sequential memory networks (FSMN) [2,
3, 4] are a recently-proposed non-recurrent neural network
topology that are able to model past and future contextual
information explicitly through the use of memory blocks
added to the network’s hidden layers. FSMN models avoid
the training-time complexity required to train RNNs (such
as backward-propagation through time [9]), and have been
shown to train faster than LSTMs models [4].

In this paper, we present our work with FSMN acoustic
models. We conjecture that the learning ability of FSMN
models is complementary to that of RNNs, and propose a
new model topology that mixes LSTM and FSMN layers, a
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combination we refer to as FLMN (Feedforward Long-short
Memory Networks).

Starting with a very strong baseline based on clustered
single-state triphone LSTM acoustic models trained with the
CTC criterion, we demonstrate in thorough experiments on
several languages in the context of a mobile voice search
and dictation transcription task that FLMNs can outperform
LSTMs of similar sizes.

The outline of the paper is as follows. In Section 2, we
give a brief overview of FSMN networks and our motivation
behind combining LSTM and FSMN. Next, in Section 3 we
explain our experimental setup. Then in Section 4 we detail
our experiments and present our results. Finally, in Section 6
we summarize our conclusions.

2. METHODOLOGY

2.1. Feedforward Sequential Memory Networks

Feedforward sequential memory networks (FSMN) [2, 3, 4]
modify feedforward networks by allowing them to explic-
itly model past and future contextual information. These
networks can be thought of as a high-order finite impulse
response filter approximation [10] of the infinite impulse re-
sponse filter of conventional RNNs [2]. FSMN models have
been claimed to offer the temporal modeling power of RNN
models while avoiding the additional complexity in train-
ing that comes with recurrent connections [2]. This enables
FSMN models to be trained more simply and quickly than
their RNN counterparts.

FSMN layers consist of two components; a traditional
feedforward layer and a memory block. The memory block
encodes the past N1 and future N2 activations of the feedfor-
ward layer into a fixed size representation. With vectorized
FSMN the output of the memory block is obtained by ele-
ment wise multiplication of those activations with a trainable
matrix of encoding coefficients. This is described in Eq. 1 [2],
where h̃`

t represents the output of the memory block at time
t, h` represents the activations of the associated hidden layer,
a` and c` represent trainable encoding coefficients, and � de-
notes element-wise multiplication. This fixed size respresen-
tation of contextual information is passed to the next layer
with the current-frame activations.

h̃`
t =

N1∑
i=0

a`i � h`
t−i +

N2∑
j=1

c`j � h`
t+j (1)

2.2. Hybrid LSTM/FSMN Networks

Our early experiments were to explore training FSMNs with
the CTC criterion. We found that FSMNs could be trained
effectively with CTC, and observed that the quality achieved
with FSMN-CTC was roughly similar to that with the LSTM-
CTC baseline. By design, FSMN layers model contextual

information immediately surrounding the current acoustic
frame while the LSTM layers are able to remember context
indefinitely, allowing them to model more distant temporal
dependencies. We thus hypothesized that the two topologies
are able to compensate for each other’s shortcomings when
modeling contextual information about the temporal evolu-
tion of the speech signal. This led us to investigate hybrid
LSTM/FSMN (FLMN) acoustic models, to explore whether
the learning power of the two topologies could be comple-
mentary. Indeed, we observed that FLMN models were able
to outperform both FSMN-only and LSTM-only acoustic
models across all our evaluation metrics (see Section 4 for
more information). The FLMN acoustic model architecture
is shown in figure 1.

Fig. 1. The FLMN architecture

3. EXPERIMENTAL SETUP

3.1. Training setup

Our acoustic feature vector sequence follows previous work
from our group on CTC acoustic models [8] and consists
of 80-dimensional log-mel features computed with a 25ms
window shifted every 10 ms. We then stack 8 consective
frames keeping every third feature frame, resulting in a frame
being processed every 30 ms. To improve performance on
mixed bandwidth data we probabilistically downsample 20%
of training examples from 16kHz to 8kHz. The features cor-
responding to the higher frequencies are subsequently zeroed
out in accordance with [11]. In order to improve noise ro-
bustness we do multistyle training (MTR) [12] where training
data is artifically distorted using a room simulator and by
adding background noise with an SNR varying randomly
between 5 and 25. All LSTM layers described in Section
4 couple the input and forget gates. This has been shown
to reduce the number of parameters in the network without
impacting quality [13].

3.2. Training methods

Models were trained with the CTC criterion [5] to conver-
gence using asynchronous stochastic gradient descent [14].
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Our targets were 8,191 clustered single-state triphones plus
the blank symbol. Unless otherwise specified the set of search
paths in the forward-backward algorithm is constrained to
those paths for which the delay between the CTC labels and
the “ground truth” alignment does not exceed 100ms as de-
scribed in Section 1.

3.3. Data sets

Our training corpus consists of human transcribed voice
search and dictation anonymized logs sent to our recognizers.
The number of utterances and total length of our training cor-
pus for each language is listed in Table 1. We withold 0.5%
of these utterances to be used as a development set.

Language Country of origin Size Length (hours)
Swedish Sweden 3M 3.5k
English India 11M 14.6k
Italian Italy 10M 13.6k
French France 16M 24.2k

Table 1: Training corpora

3.4. Evaluation

For each experiment we compare the quality of the overall
system with the experimental acoustic model to the system
with the baseline acoustic model described in Section 4.1.
Word error rate (WER) results were measured on two types
of test sets.

VS a set of voice search utterances, in the given language.

IME a set of dictation utterances, in the given language.

The size of these test sets typically include between 2k and
15k utterances, which corresponds to roughly between 3 and
20 hours of audio. All experiments made use of a standard
WFST-based beam-search decoder, in conjunction with 5-
gram LMs with ~15M n-grams and ~1M words, trained on
data from the target language being decoded.

4. EXPERIMENTS AND RESULTS

4.1. Baselines

First we established baseline numbers for conventional LSTM
models. Our baseline topology consisted of 5 fully connected
LSTM layers of 768 units followed by a softmax layer with
8,192 outputs. In past work, it has been demonstrated that ex-
tending this topology beyond 5 layers does not yield improve-
ments [15]. For completeness, we repeated these experiments
and compared networks with 5-8 LSTM layers, coming to
the same conclusion. The CTC label error rate (LER) on the
single-state triphone clusters as measured on a held-out set
for these experiments are detailed in Table 2.

Baselines were trained for all languages on which we ran
experiments. WER and LER for these baselines are presented
in Table 3.

Language Layers LER (%)

Swedish

5 27.5
6 27.6
7 27.5
8 27.3

Table 2: Adding LSTM layers does not improve LER

Language LER (%) WER (%)
VS IME

Swedish 27.5 20.4 17.4
English 27.7 22.0 19.2
Italian 20.5 12.7 7.4
French 24.0 14.2 10.2

Table 3: Baseline 5 layer LSTM LER and WER

4.2. Hybrid FLMN acoustic models

In this experiment we compared acoustic models trained with
our FLMN topology against our LSTM baseline models. The
FLMN topology consists of 4 fully connected LSTM layers
of 768 units, followed by 2 fully connected FSMN layers of
768 units, followed by a softmax layer with 8,192 outputs.
The FSMN layers use lookahead and lookback orders of 15
activations, translating to 450ms of past and future context.
These lookahead and lookback orders were chosen to roughly
correspond with the optimal orders found in [2]. WER and
LER for FLMN models are shown in Table 4. We found
that our FLMN models significantly outperformed the LSTM
baselines in all but one language-test set pairs.

Language VS WER (%) IME WER (%)
FLMN LSTM FSMN LSTM

Swedish 19.6 20.4 16.5 17.4
English 20.5 22.0 17.9 19.2
Italian 12.0 12.7 7.5 7.4
French 13.3 14.2 10.1 10.2

Table 4: FLMN results

4.3. Relaxing the CTC alignment constraint

One advantage our FLMN architecure has over the baseline is
the amount of future context available to the model. Our goal
in this experiment was to explore whether this advantage was
instrumental in allowing the FLMNs to improve over the CTC
baseline. Though CTC models are in general able to delay
outputting labels indefinitely, our baselines were constrained
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to limit the delay between acoustic features and their corre-
sponding labels [8] to 100ms as described in Section 3.2. We
thus trained CTC models relaxing this constraint by increas-
ing it from 100ms to 550ms, making the total future context
available to LSTM-CTC models equal to that in our FLMN
architecture. The WER for these experiments and their re-
spective baselines can be found in Table 5. We found that
relaxing this constraint had had a small effect on WER when
compared to modeling future context via FLMN.

Language VS WER (%) IME WER (%)
≤ 550ms ≤ 100ms ≤ 550ms ≤ 100ms

Swedish 20.4 20.4 17.4 17.4
English 21.5 22.0 18.6 19.2

Table 5: Relaxing the CTC alignment constraint on LSTM
acoustic models

4.4. Varying FSMN context windows

In streaming applications such as voice search, it is impor-
tant to have low latency between speech and the partial re-
sults presented. The lookahead order in FSMN layers sets a
lower bound on this latency due to the amount of future con-
text required to produce activations. To examine the trade-
off between latency and quality, we investigated how varying
the lookahead and lookback orders of our FLMN architecture
impacted WER. The results of these experiments are shown
in Table 6. We found that we can reduce the order of the
FSMN layers while maintaining LER gains over the baseline
system but that these gains in LER did not translate into gains
in WER.

Language Context window LER (%) WER (%)
Activations Time VS IME

French
15 450ms 18.9 13.3 10.1
10 300ms 18.6 14.1 10.2
5 150ms 20.1 14.0 10.2

Table 6: FSMN order in FLMN

4.5. Improving FSMN performance

In this experiment we investigated a way to improve the per-
formance of the FSMN layers in our FLMN architecture. One
disadvantage of FSMN layers is that the memory block en-
coding is concatenated with the activations of the feedfor-
ward layer. This results in an output that is twice as large
as a feedforward or LSTM layer, doubling the number of pa-
rameters in the weight matrix of the following layer and thus
the number of operations needed in the matrix multiplication.
To resolve this we experimented with instead summing the
encodings and the feedforward activations. This resulted in
an increase in training speed of almost 50%. Additionally,

this reduced the number of parameters in the model by 23%
as shown in Table 7. Ongoing experiments presented in Fig-
ure 2 suggest that this modification does not affect acoustic
model quality.

Topology Parameters Rel. difference (%)
LSTM 26.2MM -
FLMN 29.3MM +10.5
FLMN-sum 22.7MM -15.4

Table 7: Number of trainable parameters

Fig. 2. Rolling WER eval of French FLMN models

5. DISCUSSION

The combination of FSMN and LSTM layers in the FLMN
topology appears to have greater contextual modeling power
than LSTM layers alone. The FSMN layers are able to ex-
plicitly model the context directly surrounding the current
frame. This complements the implicit contextual modeling
of LSTMs, which we believe are better suited towards mod-
eling longer term context. This increase in contextual model-
ing power allows FLMN to outperform LSTM while using a
similar number of parameters. Like LSTM, feedforward net-
works, and convolutional networks, FSMN are another useful
“building block” in the acoustic modeling toolbox.

6. SUMMARY & CONCLUSIONS

We have described a new architecture for acoustic modeling
combining LSTM and FSMN layers. Using this architec-
ture, we have trained acoustic models with the CTC criterion
for four languages and have demonstrated that these models
consistently and reliably outperform their strong LSTM-CTC
baselines. We hypothesized that the differences in these two
topologies modeling of contextual information allows them to
complement each other. Finally, we investigated techniques
to improve the performance of these models, including meth-
ods that reduce latency and computational cost.
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