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ABSTRACT

The standard evaluation metric of automatic speech recog-
nition (ASR) is the word error rate (WER), which measures
the dissimilarity between recognized word sequences and
their ground truth. Many training algorithms designed to
reduce sequence-level errors such as WER have been pro-
posed for hidden Markov model (HMM)-based ASR, e.g.,
state-level minimum Bayes risk (sMBR). However, these ap-
proaches cannot be used directly for encoder-decoder model
based end-to-end ASR, because the encoder-decoder model
employs very different mechanisms from HMM-based ap-
proaches. In this paper, we propose a new method for opti-
mizing the encoder-decoder model based on a sequence-level
evaluation metric. Since the WER is not directly differen-
tiable, we adopt a policy gradient objective function to train
the encoder-decoder model, which enables us to minimize
the expected WER of the model predictions. This training
method employs the scoring of multiple hypotheses as in the
decoding stage while usual cross entropy training uses only
the ground truth. Therefore, we can expect it to improve the
decoding results of the encoder-decoder model. We perform
experiments using the Tedlium corpus to demonstrate the po-
tential of our proposed method for improving the recognition
performance of the encoder-decoder model.

Index Terms— end-to-end speech recognition, encoder-
decoder model, policy gradient, sequence training, Tedlium

1. INTRODUCTION

An encoder-decoder model [1] is a widely used framework for
transcribing sequences of input signals into sequences of out-
put signals using neural networks (NN). In automatic speech
recognition (ASR) tasks, the input is a sequence of speech
features and the output is a sequence of text transcriptions
[2]. Unlike a deep NN (DNN)-hidden Markov model (HMM)
hybrid approach [3], the encoder-decoder model requires nei-
ther lexicons (e.g., a pronunciation dictionary) nor predefined
alignments between acoustic frames and the transcription to
be trained. The advantage of the encoder-decoder model is
that it can directly learn mapping from speech to text. This
property enables the end-to-end joint optimization of acous-
tic and language modeling [4]. However, there are still some
limitations in the training scheme that cause discrepancies be-
tween the training and the evaluation stages.

There are two problems in the conventional cross-entropy
training of an encoder-decoder model. The first is the lack of a

common method for optimizing the model based on an actual
sequence-level evaluation metric such as character or word er-
ror rate (CER/WER) explicitly. In the DNN-HMM based and
connectionist temporal classification (CTC) based approaches
[5], sequence discriminative training methods have been pro-
posed for optimizing such a metric [6]. For example, the aim
of state-level minimum Bayes risk (sMBR) training [7] is to
explicitly maximize the expectation of word accuracy. How-
ever, it is difficult to apply sMBR to encoder-decoder mod-
els because the size of lattices composed with these models
grows exponentially with the lengths of the hypotheses. This
is the same problem faced by decoding based on recurrent NN
language models (RNNLM) [8].

The second problem with encoder-decoder models is
the gap between the prefix tokens used in the conventional
training and evaluation stages. Here token are characters,
numbers, corpus specific tags (e.g., <NOISE>) and de-
coder’s control tags (e.g., start-of-sequence <SOS> and
end-of-sequence <EOS>). The main difference between the
training and evaluation stages is a conditional probability
provided by the encoder-decoder model [9]. During train-
ing, the decoder is conditioned on ground-truth prefix tokens
while hypothesized ones are used during evaluation because
the ground-truth tokens are unavailable. We anticipate that,
by minimizing this gap in the training state, we will be able
to reduce the CER/WER in the evaluation stage.

To address the two problems described above, we pro-
pose a new training approach that uses a policy gradient [10]
to directly optimize expected the CER and WER. Moreover,
during this training, the prediction is concatenated to the past
predictions as a prefix, which is relevant to the decoding al-
gorithm. The policy gradient method is widely used in rein-
forcement learning. Recently, state-of-the-art machine trans-
lation systems use policy gradient method to optimize the
BLEU evaluation metric [11]. In this paper, we explore new
definitions of the policy gradient objective function that con-
sists of a partial CER/WER, which is more informative than
the constant CER/WER when training an encoder-decoder for
ASR.

The contribution of this paper is summarized as follows:
1) We introduce the policy gradient method to optimize the
sequence-level metric CER/WER for encoder-decoder model
based ASR. 2) We investigate new fine-grained errors using
the dynamic programming matrix of WER computation. 3)
We demonstrate the improvement obtained by these two ideas
using the Tedlium ASR task.
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2. ENCODER-DECODER MODEL

In this section, we describe the basic framework of the
encoder-decoder model based ASR.

2.1. Architecture for automatic speech recognition

An encoder-decoder model consists of two parts called “en-
coder” and “decoder” networks [1]. The encoder receives an
utterance consisting of a sequence of features x ∈ RF×U ,
where F is a feature dimension and U is the number of
frames, and transforms it to an intermediate representation
e ∈ R2×Z×U ′

that consists of bidirectional Z units of U ′ sub-
sampled frames. Then, the decoder network predicts a current
token yt from a vocabulary set Y = {‘a’, ‘b’, . . . , <EOS>}
from the encoder’s output e, the decoder’s state st and the
embedded vector of the previous token yt−1. We describe
this processing pipeline as follows:

e = Encoder(x), (1)
y0 = <SOS>, (2)
s0 = 0, (3)

[Pr(yt|x,y1:t−1), st] = Decoder(yt−1, st−1, e), (4)

where <SOS> is the start of a sequence token. The archi-
tectures of the encoder and decoder are similar to the model
proposed in [4] (i.e., an encoder consists of three bidirec-
tional LSTM layers and a decoder consists of one LSTM layer
and location based attention mechanism). Note that, the de-
coder emits an <EOS> token when it predicts the end of a
sequence.

2.2. Gaps between training and decoding

There are two gaps between the training and decoding stages.
First, the models are trained to optimize the “frame-level”
cross-entropy between ground-truth and predicted tokens,
whereas decoding results are usually evaluated in terms of a
sequence level metric such as CER or WER. Second, the pre-
diction of the current token shown in Eq. (4) is accomplished
with ground-truth tokens during training while it is realized
with a hypothesis during decoding.

We illustrate the training and decoding procedures for
encoder-decoder models in Figs. 1 and 2, respectively. Dur-
ing training, we feed prefix ground-truth tokens y1:t−1 to
the decoder network since the cross-entropy is the negative
log-likelihoods of the ground-truth tokens given the input
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Fig. 1. Training stage. A ground-truth sequence is used as the
prefix tokens y1:t−1 to compute yt.

utterance x as follows:

JCE = − log Pr(y1:K |x) = −
K∑
t=1

log Pr(yt|x,y1:t−1) (5)

where y1:K is a ground-truth token sequence.
During decoding, the encoder-decoder model requires a

prefix search [1], [4], [12] to find the best hypothesis tran-
scription for the input utterance x because the ground-truth
tokens are unavailable in the evaluation set.

3. POLICY GRADIENT BASED TRAINING

In this section, we define a new objective function to mitigate
the gap between training and decoding as discussed in the
previous section. To implement the objective function, we
introduce a sampling method for training that is similar to
the prefix search used during decoding and explore new error
definitions.

3.1. Expected CER/WER objective function

As regards the search problem, a policy gradient [10] is a
widely used method for directly minimizing the expectation
of an undifferentiable error L. For example, a simple defini-
tion of L(ỹ,y) for ASR is a CER/WER between a hypothesis
ỹ and ground-truth transcription y corresponding to an input
utterance x. The policy gradient based objective function and
its gradient are approximated as follows [13]:

JPG(Θ) = Eỹ∼PrΘ(ỹ|x)[L(ỹ,y)] ≈ 1

M

M∑
m=1

L(ỹ(m),y),

(6)

∂

∂Θ
JPG(Θ) ≈ 1

M

M∑
m=1

L(ỹ(m),y)
∂

∂Θ
log PrΘ(y = ỹ(m)|x),

(7)

where M is the number of samples, PrΘ(ỹ|x) is the likeli-
hood of the hypothesis ỹ that the ASR model with its param-
eter Θ predicts from the observed input utterance x, y and ỹm

are ground truth and m th sampled hypothesis transcriptions
from PrΘ(ỹ|x), respectively.

Except for the details of the error L and the sampling
method used on PrΘ(ỹ|x) for encoder-decoder model based
ASR, our framework is very similar to edit-distance minimum
Bayes risk training for CTC based ASR [14].
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Fig. 2. Decoding stage. The best sequences of prefix tokens
ỹ1:t−1 are beam-searched to compute ỹt.
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3.2. Sampling method for encoder-decoder models

Here we describe how to sample hypothesis tokens ỹ from an
encoder-decoder’s output distribution PrΘ(ỹ|x) in Eq. (6).
However, it is difficult to apply the existing algorithm used on
the CTC system [14] to the encoder-decoder because the size
of the lattices composed with these models grows exponen-
tially with the length of the hypotheses [8]. Hence we adopt
a similar approach to prefix-search decoding as seen in Fig. 2
for the sampling. They resemble each other in the context of
hypothesis space approximation except that we conduct the
sampling during this training, whereas we do sorting during
the prefix-search decoding.

First, we draw initialM tokens as hypotheses ỹ(m)
1 , (m =

1, . . . ,M) from the encoder-decoder’s posterior as follows:[
Pr(y1|x), s

(m)
1

]
= Decoder(<SOS>,0, e), (8)

h̃
(m)
1 =

[
ỹ

(m)
1

]
∼ MultiMPr(y1|x), (9)

Pr(h̃
(m)
1 |x) = Pr(y1|x). (10)

where h̃
(m)
t−1 is a sequence of t − 1 prefix tokens in the m th

sampled hypothesis at time t. Note that h̃(m)
t would be a pair

consisting of the next token ỹ(m)
t and the sampled predecessor

tokens h̃
(l)
t−1, where the coupled sample-ids m and l are not

always theA same because all the samples indexed with m ∈
{1, 2, . . . ,M} are sampled together as discussed below.

At succeeding time steps t ≥ 2, we compute all the proba-
bilities of the current token yt ∈ Y = {‘a’, ‘b’, . . . , <EOS>}
from the previous sampled token ỹ(m)

t−1 and the decoder’s state
s

(m)
t corresponding to the sampled prefix h̃

(m)
t as follows:[

Pr(yt|x, h̃(m)
t ), s

(m)
t

]
= Decoder(y(m)

t−1 , s
(m)
t−1, e), (11)

Pr(yt, h̃
(m)
t |x) = Pr(yt|x, h̃(m)

t )Pr(h̃
(m)
t |x), (12)

πm,yt =
Pr(yt, h̃

(m)
t |x)∑M

m=1

∑
yt∈Y Pr(yt, h̃

(m)
t |x)

. (13)

From this multinomial distribution parameter π with M ×|Y|
bins, we draw the next M samples

h̃
(m)
t+1 =

[
ỹ

(m)
t , h̃

(l)
t

]
∼ MultiM {πm,yt} , (14)

s
(m)
t = s

(l)
t , (l,m ∈ {1, 2, . . . ,M}), (15)

Pr(h̃
(m)
t+1|x) = Pr(yt = ỹ

(m)
t |x, h̃(k)

t )Pr(h̃
(k)
t |x). (16)

We repeat this procedure in Eqs. (12) – (16) until all the hy-
potheses h̃(m) end with <EOS>. Finally, we obtain the nor-
malized likelihoods of the<EOS> ended samples in Eq. (13)
as probabilities in Eq. 7.

3.3. Edit-distance based error

In this paper, we propose two different definitions of the er-
ror L in Eq. 6. One simply uses the CER/WER between the
hypothesis and ground-truth transcriptions as a “constant” er-
ror L. The other exploits the dynamic programming matrix

used in a CER/WER computation to obtain fine-grained “par-
tial” errors Lt, (t = 1, 2, . . . , T ), where t is a time step of the
hypothesis.

3.3.1. Constant error

We call C(ỹ,y)
T,K the edit distance between a hypothesis ỹ1:T

and a ground truth. y1:K to C
(ỹ,y)
T,K can be obtained from

a dynamic programming matrix C(ỹ,y) ∈ R(T+1)×(K+1) as
follows:

C
(ỹ,y)
t,0 = t, (t = 0, 1, . . . , T ), (17)

C
(ỹ,y)
0,k = j, (k = 0, 1, . . . ,K), (18)

C
(ỹ,y)
t,k = min(C

(ỹ,y)
t−1,k + 1, C

(ỹ,y)
t,k−1 + 1, C

(ỹ,y)
t−1,k−1 + δt,k)

(t = 1, 2, . . . , T, k = 1, 2, . . . ,K), (19)

δt,k =

{
0 if ỹt = yk
2 otherwise.

(20)

The constant error simply uses this edit-distance-based er-
ror rate L(ỹ,y) = C

(ỹ,y)
T,K /K for every step of the encoder-

decoder’s output ỹt uniformly as seen in related work [14].
Note that, we implement this function not only for character
tokens but also for word tokens by grouping a sequence of
characters by the space tokens. We refer to these errors as
“constant” CER and WER, respectively.

3.3.2. Fine-grained partial error

Using the constant error only provides a constant loss and its
gradient w.r.t. the encoder-decoder’s parameters at each time
step t. We expect that a fine-grained error Lt at each token
in the hypothesis ỹ(m)

t (t = 1, . . . , T ) and objective function
would be better for training the encoder-decoder model be-
cause they contain more informative training signals at each
step as discussed in [9]. With such a fine-grained error, the
objective function becomes

JFPG(Θ) ≈ 1

M

M∑
m=1

T∑
t=1

Lt(ỹ
(m),y). (21)

Considering the minimum path Ĉ(ỹ,y) = {C(ỹ,y)
T,K , . . . , C

(ỹ,y)
0,0 }

from C
(ỹ,y)
T,K to C(ỹ,y)

0,0 that is obtained by backtracking the
minimum selection in Eq. (19) on C(ỹ,y) , we define our
fine-grained error Lt as follows:

k̂(t) = argmink
{
C

(ỹ,y)
t,k

∣∣∣Cỹ,y
t,k ∈ Ĉ(ỹ,y)

}
, (22)

Lt(ỹ,y) = Ct,k̂(t)
(ỹ,y)/k̂(t), (23)

where k̂(t) is the length of the ground truth at the mini-
mum partial error of Cỹ,y

t,k . We call this error Lt “partial“
CER/WER.
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4. RELATED WORK

The policy gradient has been an effective way to optimize
searching problems. For example, the policy gradient is the
state-of-the-art technique for the image area selection known
as a hard attention mechanism for image caption generation
[15], for board evaluation and move selection in go [16] and
for direct optimization of the expected BLEU in machine
translation [11], [17].

This paper is the first result for the policy gradient based
optimization of the expected CER/WER in encoder-decoder
model based ASR, but two papers have similar concepts to
our proposed methods. In [14], a CTC based acoustic model
trained with a similar policy gradient framework to optimize
expected WER for ASR described in Sec. 3.1 has shown bet-
ter results than the one trained with sMBR. For an encoder-
decoder model based system, the authors of [9] use edit dis-
tance in their objective function, which is based on a frame-
wise edit-distance regression, to improve decoding behaviors.
The motivation behind their proposed “optimistic loss” is the
same as that of our fine-grained partial edit-distance approach
as discussed in Sec. 3.3.2.

5. EXPERIMENTS

5.1. Settings

To investigate the effect of our proposed method experimen-
tally, we used Tedlium (release 1) corpus [18], which consists
of presentation speeches and transcriptions from TED talks,
because an improvement in a sequence level training method
has been reported [19]. Note that, as we did not use any lex-
icon or language models, our results cannot be compared di-
rectly with the existing results of the acoustic model based
systems.

5.1.1. Input feature and target tokens

Tedlium consists of about 135 hours of speech (train 56803,
dev 507, test 1155 utterances). We adopted the 40 dimen-
sional FBANK features extracted by Kaldi [20] for input into
the encoder network. After feature extraction, we conducted
the global normalization of the FBANK coefficients using the
mean and standard deviations computed on the training sets.
Then, we concatenated the delta and acceleration features.

The target tokens are mainly alphabet letters, space, punc-
tuation and numbers. Tedlium has 50 vocabulary tokens. In
addition, there are some special tags (e.g., <NOISE>). All
the target sentences start with<SOS> and end with<EOS>.
These tokens are converted to 320-dimensional embedded
vectors in the first layer of the decoder network.

5.1.2. Initialization and training

We used three BLSTM layers of 320 units in the encoder and
one LSTM layer in the decoder based on the setting in [4]. All
the weights were initialized randomly as Uniform(-0.1,0.1).
First, we optimized our models with cross entropy and Adam
[21] with a mini-batch size corresponding to eight utterances.

Table 1. Character and word error rates (%) on Tedlium (135
hours). These results were obtained without any lexicons or
language models.

CER WER
dev eval dev eval

baseline 21.7 21.1 42.3 41.9
JPG-ConstCER 22.6 22.4 43.4 44.0
JPG-ConstWER 22.2 21.9 42.3 42.1
JFPG-PartialCER 21.1 20.5 40.9 40.4
JFPG-PartialWER 20.9 20.0 40.3 38.6

The learning rate started from 1e-3 and was halved until 1e-9
when no reduction of WER on the dev set was obtained. We
used this model as our baseline. Next, we conducted policy
gradient training with the cross entropy trained model as an
initial parameter. The learning rate was set at 1e-6 and halved
until 1e-9 by monitoring the WERs on the dev set. Conver-
gence took around 4 days. The number of samples used for
the policy gradient method in Eq. (7) is M = 3.

5.1.3. Decoding and evaluation

We decoded a character sequence from an utterance with a
prefix search as described in Section 2.2. Note that, we did
not use any language models or lexicons. We used the dev set
to select the best models and decoding parameters (beam size
and word insertion).

5.2. Results

Table 1 summarizes the CERs and WERs for Tedlium. We ob-
served clear improvements in both CERs and WERs with the
fine-grained policy gradient training of partial CER/WER de-
noted as JFPG-PartialCER and JFPG-PartialWER, respectively,
while the policy gradient training of constant CER/WER de-
noted as JPG-ConstCER and JPG-ConstWER, respectively,
degrade from the cross entropy trained baseline. Specifi-
cally, the model trained with the policy gradient of the partial
WER achieved the best CER of 20.0% and WER of 38.6%.
These results support our expectations in Sec. 3.3.2 that
our fine-grained partial error in our sampling method assists
optimization and reduces the CER/WER.

6. CONCLUSION

In this work, we presented a sequence training framework for
encoder-decoder models designed to reduce the CER/WER
using the policy gradient method. The experimental results
showed the potential of our proposed model. In our future
work, we will focus on the variance reduction of the pol-
icy gradient as discussed in [11], [14] because our training
method requires a very small learning rate and results in slow
convergence.
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