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ABSTRACT

This paper proposes a new approach to simultaneous speech recog-
nition and acoustic event detection of spontaneous speech based on
one-pass decoding without rescoring. In this approach, an LSTM
(long short-term memory) acoustic model outputs probabilities of
acoustic event symbols, such as filler symbols and word fragment
symbols, as well as probabilities of phonetic symbols. Then a WFST
(weighted finite state transducer) decoder detects fillers based on
a filler confidence score calculated by the ratio of the number of
filler symbols to the number of phonetic symbols in each word. The
WFST decoder also detects word fragments using a phonetic symbol
loop followed by a path accepting the word fragment symbol, which
is attached to a WFST of a lexicon. Experimental results show that
precision and recall rates of filler detection can be controlled by the
filler confidence score, and word fragments can be detected without
registering all possible word fragments to the lexicon.

Index Terms— Speech recognition, WFST, detection, filler,
word fragment

1. INTRODUCTION

Spontaneous speech often includes a lot of fillers and word frag-
ments such as “um”, “ah”, and “thi-this”. They not only lead signif-
icant performance deterioration of speech recognition [1], but also
decrease readability of real-time captioning for human. To solve
these problems, speech recognition systems need to detect and selec-
tively remove fillers and word fragments. Since many applications
of spontaneous speech recognition, such as speech-to-speech trans-
lation and speech dialogue systems, require real-time computation,
it is necessary to to detect fillers and word fragments with very low
latency.

Some techniques have been proposed [2, 3, 4] to detect word
fragments using subword language models and confusion networks
without modeling acoustic aspects of word fragments. However,
since fillers and word fragments have distinct acoustic features, it is
better to exploit such acoustic features for filler and word fragment
detection. In [5], fillers are independently modeled using acoustic-
prosodic features, and the model is applied to calculation of filler
scores of filler hypotheses during second-pass decoding, which
prevents real-time decoding. In [6], word fragments are directly
modeled by adding a fragment tag to phonemes composing word
fragments, and phoneme models with the fragment tag are used as
garbage models. We also proposed a technique to model filler and
word fragment symbols in addition to phonetic symbols as outputs
of an LSTM-CTC acoustic model [7]. In this technique, fillers and
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word fragments were registered to a lexicon and filler and word
fragment symbols were added to their pronunciation. However, it
is impracticable to register all possible word fragments to the lex-
icon. To overcome this problem, in this paper, we propose a new
decoding technique that can detect fillers and word fragments using
a conventional lexicon.

End-to-end training of an acoustic model and a language model
has recently been proposed [8, 9, 10]. Many methods use a bi-
directional LSTM model and an attention mechanism. However, it is
not suitable for real-time applications because the standard attention
mechanism requires whole input speech. In addition, some methods
use both end-to-end models and a conventional language models by
means of a conventional decoder [8, 11]. Thus, WFST decoder [12]
is still important for an efficient decoding. Our proposed decoder
discriminates fillers and word fragments from normal words using a
WFST that can accept filler and word fragment symbols. For fillers,
the WFST is generated from a conventional lexicon and a language
model, and the decoder determines fillers by checking symbols on
paths of a lattice. In addition, the decoder detects word fragments
using paths for word fragments added to a WFST of a lexicon.

2. ACOUSTIC MODEL

In this section, we introduce an acoustic model developed in [7]. In
order to model and discriminate phonetic units and acoustic events
simultaneously, we used Long Short-Term Memory trained by Con-
nectionist Temporal Classification (LSTM-CTC) criterion [13]. In
an end-to-end approach [14], grammatical events such as “apostro-
phe” and “space” symbols are used as an output symbols of the
model in addition to graphemes. On the other hand, in our approach,
a filler symbol and a word fragment symbol are added to the output
symbols of the model. Since LSTM can model long-term depen-
dency between input and output sequences and CTC allows to train a
model using input and output sequences of different lengths without
alignments, we only need to insert filler symbols and word fragment
symbols at appropriate positions in output sequences to model these
acoustic events. Table 1 shows an example of output sequences with
a filler and a word fragment. In this table, <F> and <D> represent
filler and word fragment symbols, respectively.

Figure 1 shows output probability sequences for Japanese morae
and filler and word fragment symbols calculated by LSTM-CTC
acoustic models. Figure 1(a) shows an output probability sequence
using a label in which acoustic event symbols were inserted at the
end of fillers and word fragments as described in [7]. On the other
hand, in Figure 1(b), filler symbols are inserted after each mora in
fillers. In this case, it is possible to calculate confidence scores for
filler detection by counting the number of filler symbols in word
hypotheses as described in the next section. It is noted that the con-
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(a) Acoustic event symbols are inserted at the end of fillers and
word fragments.

(b) Filler symbols are inserted after each mora in fillers.

Fig. 1. Probability sequences of phonetic and acoustic event symbols

Table 1. Output sequences with fillers and word fragments
Transcription Thi-this is ah a pen
Phonetic symbols di di s Iz aa a pe N
+filler and word

fragment symbols di <D> di s Iz aa <F> a pe N

fidence scores cannot be calculated for word fragments because it
is thought that initial parts of word fragments do not have distinct
features compared to that of normal words, and thus we insert word
fragment symbols only at the end of word fragments.

3. DECODER

We adopt a WFST decoder with an LSTM-CTC acoustic model [11].
The decoder uses a WFST composed of R, L and G as a decoding
graph, where R is a WFST squashing a label sequence of the acous-
tic model in a CTC manner, L is a WFST of a lexicon and G is a
WFST of a language model. In the proposed method, a filler symbol
<F> does not appear in L unlike [7] in order to recognize arbitrary
word as filler. For recognizing word fragments, The decoder should
accept arbitrary phonetic symbol sequences terminated by a word
fragment symbol <D>. This can be achieved by extending a mecha-
nism of dynamic words which are not in L [12, 15, 16].

3.1. Filler

In order to detect fillers, transitions accepting the filler symbol are
added to the WFST R. The filler symbol <F> appears only on the
input side of the transitions as well as a blank. By checking input
symbols on the transitions of word hypotheses, it is possible to detect
words as fillers. Figure 2 shows an example of the WFST R.

Here we introduce a filler confidence score c = f/p, where f
and p are the numbers of detected filler symbols and phonetic sym-
bols in a word, respectively. The decoder outputs a word as a filler
only when c is higher than a predetermined threshold.
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Fig. 2. WFST R with transitions accepting a filler symbol <F>.
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3.2. Word Fragment

In order to detect word fragments without registering them to the lex-
icon, a WFST L should accept arbitrary phonetic symbol sequences
terminated by <D>. Figure 3 shows an example of L including tran-
sitions to recognize arbitrary phonetic symbol sequences. In this
example, ε is an empty symbol, a set of phonetic symbols is P ={k,
b, A:, 2I}, and a set of normal words is {car, bike}. #D, #n and #p

are auxiliary symbols to help determinization. wD is a symbol to
help determining where the word fragments appear in G. wn has the
same role as wD but for dynamic words. State 2 has self-transitions,
each of which has a phonetic symbol in P on the input side for ac-
cepting arbitrary phonetic symbol sequences. Word fragments and
dynamic words share these self-transitions.

In order to calculate probabilities of dynamic words and word
fragments, the WFST G has to handle wn and wD. In the WFST G,
wn is treated as a normal word, and the probability of wn is calcu-
lated in the same manner as normal words. This can be achieved by
assigning probability of a class of words, such as unknown words or
words with the same part-of-speech, to wn. On the other hand, it is
difficult to calculate probabilities of the word fragments because of
the difficulty of collecting a text corpus including word fragments
occurring naturally. Thus, G should accept wD in any context by
adding a self-transition with wD to states in G. To prevent excessive
enlargement of L ◦G, we limit adding the self-transition with wD to
states having an outgoing transition with wn.

The construction steps for L and G is modified as

RLG = πε(opt(R ◦ opt(proj
i→o

(L ◦G)))),

where ◦ represents composition, opt represents determinization
and minimization, πε replaces auxiliary symbols with ε [17], and
proj i→o projects an input symbol to an output symbol for each
transition in the cyclic transition of L for phonemes. Additionally,
an output symbol on a transition with input symbol #p is replaced
by wn for dynamic words and wD for word fragments, respectively,
after proj i→o for decoding efficiency.

Word fragments are recognized through a WFST D by sharing
the mechanism of dynamic words without using outputs of RLG di-
rectly. The decoder refers RLGD = RLG ◦ D during decoding.
This composition operation is performed on-the-fly. The WFST D
has three functions: (1) convert a phoneme sequences to dynamic
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Fig. 4. WFST D.

words, (2) transfer normal words without any conversion, (3) con-
vert phonetic symbol sequences to wD which is referred in post-
processing. Figure 4 shows an example of the WFST D. In this
example, a dynamic word ‘kibe’ is recognized by a path 0 → 2 →
3 → 4 → 5 → 0, a self-transition with *:* at state 0 realizes the
function (2), and a path 0 → 1 → 0 realizes the function (3).

The post-processing collects phonetic symbol sequences of
word fragments by the following steps:

1. Find wD on the output side of a searched path.
2. Find word boundaries of wD.
3. Retrieve an input symbol sequence on the path specified by

the word boundaries.
4. Squash the input symbol sequence in the CTC manner.
5. Get a character sequence from the squashed input symbol se-

quence such as a phonetic symbol sequence.

In the case of recognizing Japanese language using morae, a
squashed input symbol sequence can be easily converted to a kana
character sequence because they can be mapped one-to-one.

In order to prevent word fragments from dominating recognized
words, a penalty is added to the self-transition for word fragments
(e.g., at state 1 in Figure 4). This penalty should be determined
empirically as described in the next section.

4. EXPERIMENTS

4.1. Experimental Setup

4.1.1. Evaluation Data

Evaluation experiments were conducted using an in-house Japanese
corpus and the Corpus of Spontaneous Japanese (CSJ) [18]. The in-
house Japanese corpus is a liaison-meeting evaluation set that con-
sists of half an hour of speech by a speaker. The CSJ is a stan-
dard set for an evaluation of spontaneous Japanese speech recog-
nition. We used CSJ testset3 that includes 2,484 monologue ut-
terances by 10 speakers. For both of the evaluation sets, the ut-
terances were recorded by close-talking microphones. The num-
ber of fillers and the number of word fragments in each evalua-
tion set are shown in Table 2. The evaluation metrics are precision
and recall rates for detection performance, and character error rate
(CER) [%] for speech recognition performance, which is calculated
by CER = 100 − 100 × (C − I)/N, where C is the number of
correct characters, I is the number of insertion characters, and N is
the total number of characters in the reference.

4.1.2. Acoustic Model

In the experiments, uni-directional LSTM-CTC models were trained
on the complete CSJ training set (about 580 hours) for real-time
decoding. The CSJ training set has filler and word fragment tags
in transcriptions. The basic feature was a 28-dimensional Mel-
filterbank output. The input feature vector for the LSTM-CTCs was
created by concatenating current and consecutive 8 previous frames,

Table 2. The number of fillers and word fragments
#Filler #Word fragment

CSJ testset3 785 169
Liaison-meeting 238 36

Table 3. Acoustic models
Training label for

Acoustic model “こ，ええとこの (ko, eeto kono)”
Normal model (NAM) ko e e to ko no
Filler + word fragment
detection model ko <D> e e to <F> ko no
(FDAM1)
Filler + word fragment
detection model ko <D> e <F> e <F> to <F> ko no
(FDAM2)

Table 4. Lexicons for the conventional decoder
Lexicon Word and the pronunciation

kono: ko no,
Normal lexicon (NLex) eeto: e e to
Normal lexicon with kono: ko no, ko: ko,
word fragments (NLex+D) eeto: e e to
Lexicon with filler and word kono: ko no, ko: ko <D>,
fragment symbols 1 (FDLex1) eeto: e e to <F>
Lexicon with filler and word kono: ko no, ko: ko <D>,
fragment symbols 2 (FDLex2) eeto: e <F> e <F> to <F>

giving 9 frames in each input feature vector. Hidden layers were
composed of 3 LSTM layers with 1024-dimensional memory cells
and recurrent projections [19] that reduce the number of dimensions
from 1024 to 256 for each layer output. A final layer of 126 units
was set for Japanese mora outputs including a blank and a silence
outputs. For filler and word fragment outputs, 2 units were added
to the final layer. For all experiments, we created three acoustic
models listed in Table 3. The main differences among them were
the training labels. For fillers, two training methods were tested as
shown in Figure 1. One was to insert filler symbols at the end of
fillers as shown in Figure 1 (a), and the other was to insert filler
symbols after each mora in fillers as shown in Figure 1 (b).

4.1.3. Language Model and Lexicon

A 4-gram language model was trained on 200 million sentences ex-
tracted from web pages and Toshiba internal spontaneous dataset. It
is noted that the CSJ dataset was not include in the training set.

Table 4 shows four types of lexicons and sample words included
in the lexicons. In this table, the normal lexicon was used for the
proposed decoder, and other lexicons are used for the conventional
decoder. The vocabulary size was about 200,000 words. The lexi-
cons included fillers extracted from the spontaneous dataset. Word
fragments extracted from the CSJ dataset were added to the lexicons
for the conventional decoder, while word fragments were not added
to the normal lexicon for the proposed decoder. In order to combine
LSTM-CTC acoustic models having filler and word fragment out-
puts with conventional decoder, filler and word fragment symbols
were added to pronunciations of words in the lexicons FDLex1 and
FDLex2.

4.1.4. WFST

We prepared 5 WFSTs based on the combinations of acoustic mod-
els and lexicons. For each WFST, we selected a conventional
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Fig. 5. The metric for calculating the tolerance
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Fig. 6. Filler confidence and detection performance using FDWT4

decoder or the proposed decoder for detection of fillers and word
fragments. Table 5 shows the combinations and selected methods.
“NWT” is the WFST using the conventional language model, the
conventional lexicon with word fragments, and the conventional
decoder. “FDWT1” and “FDWT2” use lexicons including filler and
word fragment symbols for the decoding. The main contributions
of this paper are “FDWT3” and “FDWT4” that use the conven-
tional language model, the conventional lexicon and the proposed
decoder. We used a Toshiba original decoder based on [15] for all
experiments.

4.2. Speech Recognition Performance

Table 6 shows the recognition performance of each WFST. Basi-
cally CERs are similar among the WFSTs. However, the CERs of
FDWT1-4 are slightly better than NWT’s. It seems that the explicit
modeling of fillers and word fragments results in better performance.

4.3. Detection Performance

We defined a tolerance for filler and word fragment detection based
on logistic OR and logistic AND sections between reference and de-
tected sections depicted in Figure 5. The tolerance is calculated by
tolerance = (l − c)/c, where l and c denote the length of the OR
section and the length of the AND section, respectively. The value
becomes 0 when an detected section is identical to a corresponding
reference section. In this experiment, detection of fillers and word
fragments were judged to be correct if the tolerance was less than a
threshold value. We set the threshold value to 0.7 for filler detec-
tion and 0.9 for word fragment detection. Generally, uni-directional
LSTM-CTC modeling leads to the delay of output of phonetic sym-
bols. Hence, the positions of the detections are uniformally shifted
back compared to the real positions of the acoustic events on the
time axis. We set the time offset to 300 ms to compensate for the
difference.

Figure 6 shows the relation between the filler confidence thresh-
old and the filler detection performance in terms of the precision
and recall rates and the F-value. Table 7 and 8 show the perfor-

Table 5. Created WFSTs (“WF”: Word Fragment)
WFST name Acoustic model Lexicon Decoder

Normal (NWT) NAM NLex+D Conventional
Filler & WF (FDWT1) FDAM1 FDLex1 Conventional
Filler & WF (FDWT2) FDAM2 FDLex2 Conventional
Filler & WF (FDWT3) FDAM1 NLex Proposed
Filler & WF (FDWT4) FDAM2 NLex Proposed

Table 6. ASR performance for each WFST (CER [ %])
WFST name CSJ testset3 Liaison-meeting Ave.

NWT 10.34 15.36 12.85
FDWT1 10.35 14.75 12.55
FDWT2 9.83 14.65 12.24
FDWT3 10.53 14.82 12.68
FDWT4 10.16 14.99 12.57

Table 7. Filler Detection performance (F:F-value)
CSJ testset3 Liaison-meeting

WFST Precision Recall F Precision Recal F
NWT 0.77 0.61 0.68 0.79 0.45 0.57

FDWT1 0.80 0.77 0.78 0.87 0.57 0.69
FDWT2 0.78 0.81 0.79 0.78 0.58 0.66
FDWT3 0.75 0.85 0.79 0.72 0.58 0.64
FDWT4 0.75 0.85 0.79 0.70 0.54 0.61

Table 8. Word Fragment Detection performance (F:F-value)
CSJ testset3 Liaison-meeting

WFST Precision Recall F Precision Recall F
NWT 0.22 0.04 0.07 0.00 0.00 0.00

FDWT1 0.36 0.02 0.04 1.00 0.03 0.05
FDWT2 0.42 0.03 0.06 1.00 0.06 0.11
FDWT3 0.53 0.25 0.34 0.86 0.33 0.48
FDWT4 0.49 0.25 0.34 0.61 0.31 0.41

mance of the filler and word fragment detection of each WFST. The
value of filler confidence was set to 0.3 in Table 7. The penalty to
the self-transition for word fragments was set to maximize the ASR
performance. For the filler detection, it can be shown that the per-
formance of FDWT1-4 was better than that of NWT. However, the
performance of FDWT3 and FDWT4 was similar to that of FDWT1
and FDWT2. This is because the filler can likely be covered with a
conventional language model and lexicon (NWT), and the effective-
ness of the acoustic assist for the filler detection is the same for all
methods. The advantage of FDWT4 is that it can control the pre-
cision and recall rates by the filler confidence score depending on
the purposes of applications. On the other hand, for word fragment
detection, the performance of FDWT3 and FDWT4 was apparently
better than the performance of FDWT1 and FDWT2. The conven-
tional decoder cannot detect word fragments even if word fragments
extracted from the CSJ dataset is added to the lexicon. These results
show that our approach is effective for detection of filler and word
fragment using conventional language models and lexicons.

5. CONCLUSION

We proposed a technique to detect fillers and word fragments using
an LSTM acoustic model and a WFST decoder. The LSTM acous-
tic model outputs filler and word fragment symbols as well as pho-
netic symbols, and the proposed decoder can simultaneously recog-
nize speech and detect fillers and word fragments using conventional
language models and lexicons without registering all possible word
fragments. We showed that in word fragment detection the proposed
decoder outperformed a conventional decoder using lexicons includ-
ing word fragments.
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