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ABSTRACT

Attention-based sequence-to-sequence models for automatic
speech recognition jointly train an acoustic model, language model,
and alignment mechanism. Thus, the language model component is
only trained on transcribed audio-text pairs. This leads to the use of
shallow fusion with an external language model at inference time.
Shallow fusion refers to log-linear interpolation with a separately
trained language model at each step of the beam search. In this
work, we investigate the behavior of shallow fusion across a range of
conditions: different types of language models, different decoding
units, and different tasks. On Google Voice Search, we demonstrate
that the use of shallow fusion with an neural LM with wordpieces
yields a 9.1% relative word error rate reduction (WERR) over our
competitive attention-based sequence-to-sequence model, obviating
the need for second-pass rescoring.

1. INTRODUCTION

Sequence-to-sequence models have started to gain popularity for
automatic speech recognition (ASR) tasks, particularly for their ben-
efit of folding various parts of the speech recognition pipeline (i.e.,
acoustic, prononcuation and language modeling) into one neural net-
work [1, 2, 3, 4]. For example, the Listen, Attend, and Spell (LAS)
model jointly learns an encoder, which serves as an acoustic model, a
decoder, which serves as a language model (LM), and an attention
mechanism, which learns alignments. Recently, a comparison of
these different methods showed that performance still lagged behind
a state-of-the-art ASR system with separate acoustic, pronunciation
and language models [5]. The focus of this paper is to explore a
means of making LAS competitive to a conventional ASR model.

We propose that one reason for the performance degradation
could be that the LAS decoder, which replaces the LM component in
a traditional ASR system, is trained only on transcribed audio-text
pairs, which is about 15 million utterances for the Google Voice
Search task [5]. In comparison, state-of-the-art LMs are typically
trained on a billion words or more [6]. This raises the question of
whether the LAS decoder can learn a strong enough LM from the
training transcripts. In particular, we posit that in a task like Google
Voice Search, which has a very long tail of queries, the training
transcripts may not sufficiently expose the LAS decoder to rare words
and phrases.

However, these words may appear in auxiliary sources of text-
only data such as web documents or news articles, which comprise
billions of words. This work investigates the impact of training a
separate LM on auxiliary text-only data, and incorporating this model
as an additional cost term when decoding a LAS model.

Several recent works have also investigated the use of LMs with
attention-based models. [1] demonstrated significant improvement
by rescoring the n-best hypotheses produced by LAS with a 5-gram
LM. [2] extended this idea by performing log-linear interpolation
between LAS and an n-gram LM at each step of the beam search, a
method we will henceforth refer to as shallow fusion, following the
terminology of [7]. Shallow fusion was further studied in [8], which
extended it with use of a coverage penalty. Both of these works were
limited to Wall Street Journal (WSJ), which, given its scarcity of data,
stands to gain more from an external LM than a large-scale task such
as Google Voice Search. All of these works only investigated n-gram
LMs, and all focused on bidirectional models that output graphemes.

The use of an external LM has also been investigated in the
context of training, such that the LAS model could learn when and
how to use the LM [7, 9, 10, 11]. These works applied Recurrent
Neural Network (RNN) LMs, but this was largely cited as a means to
make the integration simpler. None provided a direct comparison of
RNN LMs to n-gram LMs. Further, they were all limited to grapheme
systems, with [7] and [9] focused on machine translation.

This work has two goals. First, we extend the work of [8] by
exploring the behavior of shallow fusion across different sub-word
units and different types of LMs on a small corpus task. We find that
RNN LMs are more effective at reducing error than n-gram LMs,
with the magnitude of this reduction consistent across sub-word units.

The second goal of our work is to explore the behavior of shallow
fusion on a large-scale, large-vocabulary English Voice Search task.
Voice Search has much more training data than WSJ so it is not clear
that the benefits observed on WSJ should necssarily translate; given
sufficient training data, the LAS decoder may be strong enough to
eliminate the effect of any external LM. Additionally, Voice Search
requires a unidirectional model, which has not previously been stud-
ied with shallow fusion. Ultimately, we find that shallow fusion
with a worpiece-level RNN LM yields a 9.1% relative WERR on a
competitive unidirectional baseline.

The next two sections will provide more details about the method
we use for integrating the LM and the variants that we compare.
Section 4 describes the setup for our experiments on two different
tasks, and Section 5 provides the results of these experiments. Finally,
in Section 6 we conclude this study.

2. SHALLOW FUSION WITH LAS MODELS

2.1. Listen, attend, and spell

As shown inside the dotted line box in Figure 1, the LAS model
consists of an encoder (“listen”), an attention mechanism (“attend”),
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and a decoder (“spell”).
The encoder, which is akin to an acoustic model, consists of

a stack of long short-term memory layers (LSTMs) [12]. These
take as input a sequence of d-dimensional feature vectors, x =
(x1,x2, · · · ,xT ), where xt ∈ Rd, and produces a higher-order
feature representation, denoted henc

1 , · · · ,henc
T .

The output of the encoder is passed to an attention mechanism,
which determines which part of the encoder features to attend to
in order to predict each output symbol, effectively performing a
dynamic time warping. The output of the attention mechanism is a
single context vector that encodes this information.

Finally, the decoder is another stack of LSTMs which is con-
ditioned on the context vector. Given the context vector and the
previous prediction yu−1 at timestep u, the decoder network gener-
ates logits hdecu . These are passed through a softmax to compute a
probability distribution P (yu|hdecu).

The decoder can be thought of as a neural LM conditioned on the
acoustic model output; however, since the LAS model is structured
such that the encoder feeds the decoder, this internal LM can only be
trained on audio-text pairs. In the next section, we will discuss the
incorporation of an external LM.

Fig. 1: The dotted line box shows the basic LAS model, including an
encoder, attention, and decoder. In shallow fusion, an external LM is
incorporated via log-linear interpolation.

2.2. Integrating a language model

Shallow fusion, shown in Figure 1, is a method for incorporating
an external LM during inference only. As the figure shows, only
the contents of the dotted line box are used to train of the LAS
model. Then, at inference time, we perform log-linear interpolation
with an LM at each step of the beam search. In other words, while
the objective criterion for decoding a sequence-to-sequence model
typically would be:

y∗ = argmax
y

log p(y|x) (1)

we instead use the following criterion:

y∗ = argmax
y

log p(y|x) + λ log pLM (y) + γc(x, y) (2)

where pLM is provided by an LM, and λ and γ are tuned on a dev
set. c(x, y) is referred to as a coverage penalty and is designed to

penalize incomplete transcripts. It measures the extent to which the
input frames are “covered” by the attention weights, computed as:

c(x, y) =
∑
j

log(min(
∑
i

ai,j , 0.5)) (3)

where ai,j is attention probability of the jth output label yj on the
ith input feature vector xi. By promoting transcripts which require
attention to more of the audio frames, the coverage penalty addresses
the common sequence-to-sequence failure mode of assigning high
probability to a truncated output sequence [13]; like [8, 14], however,
we apply this only at decoding time. The effect of promoting longer
transcripts is similar to that of a length normalization or word insertion
reward; unlike these atlernatives, though, it is less prone to produce
“babbling”, since simply inserting more tokens while attending to the
same frames will not reduce the coverage penalty.

An alternative method of incorporating an LM would be to sim-
ply rescore the n best transcripts produced by the beam search, as
in [1]. Our initial experiments on the WSJ corpus showed this method
provided some reduction in error, but not as much as shallow fusion.
This is because the correct prefix may get pruned by the beam search
early on, and not make it into the n-best list.

3. EXPLORING SHALLOW FUSION ACROSS TASKS,
DECODING UNITS, AND TYPES OF LANGUAGE MODELS

3.1. Tasks: WSJ vs. Google Voice Search

This work investigates the impact of shallow fusion on two different
tasks. This is because we hypothesize that there are several task-
specific properties that can affect the relative gain afforded by an
external LM:

• Size of training corpus, because on a large training corpus the
LAS decoder will itself be a very strong LM.

• Size of vocabulary, as some of the benefit of an external LM
may simply be exposure to unseen words and phrases.

• Availability of LM training data, since the LM training data
must come from the same domain as the task

Our first set of experiments focuses on the WSJ corpus for several
reasons. First, we have a large amount of text-only data also from
WSJ, which reduces the possibility of domain mismatch between the
LM and the LAS model. Second, given the relatively small size of
the WSJ corpus, we see that indeed many errors in a vanilla LAS
model result from a poor LM. Third, we can use the standard setup
for the training data and vocabulary of the LM, making comparison
to previous works more direct. Thus WSJ serves as a useful testbed
for measuring the contribution of an external LM.

On the other hand, the small training corpus, means that the gains
seen on the WSJ task may not necessarily transfer to a task with a
much larger training set. For this reason our second set of experiments
is done on the Google Voice Search task. Two notable properties of
Voice Search are that it has a large vocabulary and it has a very long
tail of queries.

3.2. Decoding Units: Wordpieces vs. Graphemes

While previous works have only investigated shallow fusion for
graphemes, we extend our study to wordpieces. Wordpieces [15]
are sub-word units that can be as small as a single grapheme or as
large as a complete word. First, a fixed wordpiece vocabulary is
determined based on frequencies of words in a training corpus. Once
the set of valid wordpieces is learned, a transcript can be tokenized
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by choosing the longest possible component wordpieces in a greedy
fashion.

Like graphemes, wordpieces have the advantage that there are no
out-of-vocabulary terms because any word can be decomposed into
wordpieces. (All graphemes are included in the wordpiece vocabu-
lary.) But wordpieces have the additional benefit that they effectively
capture more context per decoding step than graphemes. This reduces
the length of dependencies that must be learned by an LM.

For example, the phrase “the company announced today” consists
of 27 graphemes, which means that a grapheme-level LM (LM-G)
would require 27 decoding steps to output the full phrase; but a
wordpiece-level LM (LM-WP) might compose this phrase as, for ex-
ample the _com pany _announc ed _today which would
require only 5 steps to output. Since it requires fewer steps across
which to memorize dependencies, we expect that LM-WP can achieve
lower (word-level) perplexity than LM-G, which in turn could make
it more effective in shallow fusion.

3.3. Language Models: RNNs vs. n-gram

This work further compares shallow fusion across various types of
LMs. Previous works have focused on n-gram LMs when applying
shallow fusion [8, 2] or RNN LMs for deep or cold fusion [7, 11].
Here we consider both n-gram LMs and RNN LMs [16] for shallow
fusion.

There are several reasons that n-gram LMs have been preferred
in past work. First, they can incorporate word-level constraints. Since
we incorporate the LM at each step of the beam search, the LM must
provide a probability distribution at the level of the LAS model’s
decoding unit (either grapheme or wordpiece). In the case of an RNN
LM, this means that we train at the grapheme or wordpiece level. In
the case of an n-gram LM, however, there are two possible setups.
The most obvious is to train the LM at the level of the decoding unit
(grapheme or wordpiece). But in order to have a strong grapheme-
level LM, it is necessary to train at a very high order, such as 20-gram,
to capture at least a few words worth of context. Following [2], an
alternative is to train the LM at the word level, and then, using the
Weighted Finite State Transducer framework [17, 18], compose it
with a “speller” which breaks each word into its component units
(graphemes or wordpieces). In this way, we can still get a probability
distribution at the unit level, while incorporating the knowledge of a
word-level LM.

Furthermore, this latter setup implicitly introduces a dictionary.
In a task like WSJ, the baseline model has a relatively weak decoder,
so it will frequently output sequences of graphemes which do not
comprise English words. The dictionary constraints imposed by the
n-gram LM can be helpful to prune these out.

Finally, in a task like Google Voice Search, there are many
sources of data that can potentially be useful in an external LM.
We can use Bayesian interpolation to combine n-gram LMs trained
individually on each of these domains, optimizing the interpolation
weights against WER on a dev set [19]. Currently this sort of tech-
nique only exists for n-gram LMs.

Despite all these advantages of n-gram LMs, recent literature
has shown that state-of-the-art RNN LMs have a significantly lower
perplexity than n-gram LMs on the 1 billion word benchmark, par-
ticularly on rare words [6]. Thus we hypothesize that they should
also provide a greater reduction in error when used in shallow fusion.
Furthermore, given enough training data, as we have in the Google
Voice Search task, we suggest that the introduction of the dictionary
may not be necessary; in fact, it may be limiting to the model since
the LAS model can actually “sound out” words that it has never seen

before but which are spelled phonetically. Though the techniques
of Bayesian interpolation and incorporating dictionary constraints
currently apply only the n-gram models, we posit that analogous
methods should be possible for RNN LMs, and identify these as areas
for future work.

4. EXPERIMENTAL DETAILS

4.1. Wall Street Journal

Our experiments are conducted on two tasks. The first is the WSJ
dataset. Following the setup in [8], we train on si284, validate on
dev93 and evaluate on eval92.

For grapheme experiments, our baseline model is a LAS model
with 3 convolutional layers and a convolutional LSTM layer, followed
by 3 bidirectional [20] LSTM layers. The output vocabulary is 72
graphemes. Temporal label smoothing is applied as described in
[8]. For wordpiece experiments, our baseline model has the same
architecture as the grapheme model, except that the output vocabulary
has 1,024 wordpieces and no label smoothing is applied because label
smoothing resulted in a weaker model. Instead, L2 regularization is
used. Larger wordpiece vocabularies also resulted in worse models.

The external LMs are trained using the WSJ text corpus and
extended vocabulary (approximately 150K terms) provided in the
Kaldi WSJ s5 recipe [21]. The RNN LMs consist of two LSTM
layers of 512 hidden units. The word- , grapheme- , and wordpiece-
level n-gram LMs are all trained with Katz smoothing and pruned to
between 15M and 20M n-grams. The word-level LM is composed
with a speller to decode at the grapheme or wordpiece level.

4.2. Google Voice Search

The second task is a ∼12,500 hour training set consisting of 15M
English utterances. The training utterances are anonymized and hand-
transcribed, and are representative of Google’s Voice Search traffic.
This data set is created by artificially corrupting clean utterances using
a room simulator, adding varying degrees of noise and reverberation
such that the overall SNR is between 0dB and 30dB, with an average
SNR of 12dB. The noise sources are from YouTube and daily life
noisy environmental recordings. We report results on two sets of
∼14,800 anonymized, hand-transcribed Voice Search utterances each,
extracted from Google traffic.

The baseline model for Voice Search experiments has an encoder
consisting of 5 unidirectional LSTM layers of 1,400 units each, a
decoder consisting of 2 LSTM layers with 1,024 hidden units each,
and a multi-headed attention mechanism [22]. We use a unidirectional
encoder because the Voice Search task requires a streaming model.

All experiments use 80-dimensional log-mel features, computed
with a 25-ms window and shifted every 10ms. Similar to [23, 24], at
the current frame, t, these features are stacked with 3 frames to the left
and downsampled to a 30ms frame rate. The models are trained with
the cross-entropy criterion, using asynchronous stochastic gradient
descent optimization in TensorFlow [25].

Our text dataset consists of billions of sentences from several
sources: untranscribed anonymized Voice Search queries, untran-
scribed anonymized voice dictation queries, anonymized typed
queries from Google Search, as well as the transcribed training utter-
ances mentioned above. The production LMs denoted as PRODLM1
and PRODLM1 are both 5-gram LMs with a vocabulary of 4M.
PRODLM1 is constructed as a Bayesian-interpolated mixture of LMs
trained on the individual data sources [19], while PRODLM2 is trained
on all data. Following [26], the RNN LM is trained on about half a
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billion sentences sampled from the full pool data. It consists of two
LSTM layers of 2,048 units each.

5. RESULTS

5.1. Comparing LMs for shallow fusion

We begin by comparing three types of LMs in the context of shallow
fusion with the LAS grapheme model LAS-G on the WSJ task: (1) an
RNN LM trained on graphemes (RNN-G), (2) a 20-gram LM trained
on graphemes (20-GRAM-G), and (3) a 3-gram LM trained on words
and composed with a speller (3-GRAM-W).

Comparing these, we see that 3-GRAM-W barely outperforms 20-
GRAM-G. This shows that, given the same amount of context, having
word constraints and an implicit dictionary has only a slight benefit.
RNN-G, however, outperforms both of the n-gram LMs, suggesting
while the word constraints may help, they are insufficient to make up
the gap between RNN LMs and n-gram LMs. One opportunity for
future work would be incorporating word constraints into RNN-G.

System Dev Test
LAS-G 13.0 10.3

LAS-G + 20-GRAM-G 10.3 7.7
LAS-G + 3-GRAM-W 10.0 7.6

LAS-G + RNN-G 9.3 6.9

Table 1: WER of LAS-G fused with various LMs. While word
constraints do help the n-gram LM, RNN-G performs even better.

5.2. Extending shallow fusion to wordpiece models

Next, we perform a comparison for LAS-WP. Since we have shown
that word constraints are helpful for sub-word-level n-gram LMs, we
limit our comparison to just two LMs: (1) an RNN LM trained on
wordpieces (RNN-WP), and (2) a 3-gram LM trained on words and
composed with a speller (3-GRAM-W).

As Table 2 shows, we see the same trend on LAS-WP, with
RNN-WP significantly better than 3-GRAM-W. However, it should be
noted that the baseline LAS-WP is worse than LAS-G. This is likely
due to the small amount of data being insufficient to train the large
number of additional parameters: we found that the larger we made
the wordpiece vocabulary, the worse the model became. As a result of
this difference, the LM results for LAS-WP are not directly comparable
to the LM results for LAS-G. The main observation we make is that
the RNN performs best in both cases, with the relative improvement
being roughly consistent for both graphemes and wordpieces.

System Dev Test
LAS-WP 15.7 12.3

LAS-WP + 3-GRAM-W 12.9 9.3
LAS-WP + RNN-WP 11.5 8.2

Table 2: WER of LAS-WP combined with various LMs on WSJ.
RNN-WP again performs best.

5.3. Scaling up to Voice Search

We now turn to the Voice Search task. First, since we have an abun-
dance of training data, we see in the first two lines of Table 3 that the
wordpiece model (LAS-WP) is now comparable with the grapheme
model (LAS-G). Thus our analysis here is limited to LAS-WP.

In the traditional HMM/CTC-based system, the decoding
proceeds in two passes: the first pass uses a small n-gram LM

(PRODLM1), which fits in memory and minimizes the search space
to meet real-time requirements. The first pass generates an N-best
list which we rescore with a much larger n-gram LM (PRODLM2)
[19]. In the third and fourth lines of Table 3 we see the results of
applying the production LMs to the LAS model with shallow fusion:
the LM inherent in LAS is quite competitive, but there is a small
gain from the highly-pruned PRODLM1. The much larger PRODLM2,
despite being 40x larger, provides only slightly more improvement.
In addition, PRODLM2 is 80GB and must be run on multiple servers.
This is operationally unwieldy and cannot be efficiently integrated
with low latency during the first pass.

On the other hand, while computationally expensive, RNN LMs
are known to be more compact than their n-gram counterparts. In line
5 of Table 3, LAS-WP + RNN-WP, we show that the shallow fusion of
LAS with RNN-WP provides an even greater benefit than PRODLM2.
Its much lower memory footprint (1.1 GB) allows it to fit in the first
pass. We then rescore the system with PRODLM2 (as LAS-WP + RNN-
WP + PRODLM2). This yields no further gain, showing that we have
obviated the need for a second-pass rescoring at all.

Thus, as with WSJ, we see that RNN-WP more effectively encodes
the LM information compared to the n-gram model. In addition,
RNN-WP is 1.5% the size of PRODLM2, and also enjoys the additional
benefit of not having out-of-vocabulary words since it is trained on
wordpieces. Note that both PRODLM1 and PRODLM2 are interpolated
across several data-source-specific LMs, while RNN-WP uses ad hoc
mixing weights for the various data sources. Investigating a more
principled method of mixing the data sources for RNN-WP is an
opportunity for future work.

System Dev Test LM size
LAS-G 9.5 7.7 0GB

LAS-WP 9.2 7.7 0GB
LAS-WP + PRODLM1 8.8 7.4 2GB
LAS-WP + PRODLM2 8.7 7.2 80GB
LAS-WP + RNN-WP 8.4 7.0 1.1GB

LAS-WP + RNN-WP + PRODLM2 8.4 7.0 81.1GB

Table 3: WER of shallow fusion of LAS with production n-gram
LMs and an RNN LM. The RNN LM captures all the benefits of
PRODLM2 in a compact form.

6. CONCLUSIONS

In this work we investigated the technique of shallow fusion, in
which an external LM is used to augment a LAS model at inference
time. We demonstrated that on the small WSJ task, an RNN LM
yielded greater improvement than an n-gram LM, and the gains were
consistent across graphemes and wordpieces. On the much larger
Voice Search task, we showed that the decoder LM inherent in LAS
is already very competitive, yielding little benefit from shallow fusion
with the first-pass production LM. However, we found that shallow
fusion with an RNN LM provided greater benefit. In fact, with 9.1%
relative WERR on a competitive unidirectional system, it eliminated
the need for a second pass rescoring, despite being 70 times smaller
than the second pass LM.
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