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ABSTRACT

Connectionist temporal classification (CTC) is widely used
for maximum likelihood learning in end-to-end speech recog-
nition models. However, there is usually a disparity between
the negative maximum likelihood and the performance met-
ric used in speech recognition, e.g., word error rate (WER).
This results in a mismatch between the objective function and
metric during training. We show that the above problem can
be mitigated by jointly training with maximum likelihood and
policy gradient. In particular, with policy learning we are able
to directly optimize on the (otherwise non-differentiable) per-
formance metric. We show that joint training improves rela-
tive performance by 4% to 13% for our end-to-end model as
compared to the same model learned through maximum like-
lihood. The model achieves 5.53% WER on Wall Street Jour-
nal dataset, and 5.42% and 14.70% on Librispeech test-clean
and test-other set, respectively.

Index Terms— end-to-end speech recognition, LVCSR,
policy gradient, deep neural networks

1. INTRODUCTION

Deep neural networks are the basis for some of the most ac-
curate speech recognition systems in research and production
[1, 2, 3]. Neural network based acoustic models are com-
monly used as a sub-component in a Gaussian mixture model
(GMM) and hidden Markov model (HMM) based hybrid sys-
tem. Alignment is necessary to train the acoustic model, and a
two-stage (i.e. alignment and frame prediction) training pro-
cess is required for a typical hybrid system. A drawback of
such setting is that there is a disconnect between the acous-
tic model training and the final objective, which makes the
system level optimization difficult.

The end-to-end neural network based speech models by-
pass this two-stage training process by directly maximizing
the likelihood of the data. More recently, the end-to-end mod-
els have also shown promising results on various datasets [4,
5, 6, 7]. While the end-to-end models are commonly trained
with maximum likelihood, the final performance metric for a
speech recognition system is typically word error rate (WER)
or character error rate (CER). This results a mismatch be-
tween the objective that is optimized and the evaluation met-
ric. In an ideal setting the model should be trained to optimize

the final metric. However, since the metrics are commonly
discrete and non-differentiable, it is very difficult to optimize
them in practice.

Lately, reinforcement learning (RL) has shown to be ef-
fective on improving performance for problems that have
non-differentiable metric through policy gradient. Promis-
ing results are obtained in machine translation [8, 9], image
captioning [8, 10], summarization [8, 11], etc.. In particu-
lar, REINFORCE algorithm [12] enables one to estimate the
gradient of the expected reward by sampling from the model.
It has also been applied for online speech recognition [13].
Graves and Jaitly [4] propose expected transcription loss that
can be used to optimize on WER. However, it is more com-
putationally expensive. For example, for a sequence of length
T with vocabulary size K, at least T samples and K metric
calculations are required for estimating the loss.

We show that jointly training end-to-end models with self
critical sequence training (SCST) [10] and maximum likeli-
hood improves performance significantly. SCST is also effi-
cient during training, as only one sampling process and two
metric calculations are necessary. Our model achieves 5.53%
WER on Wall Street Journal dataset, and 5.42% and 14.70%
WER on Librispeech test-clean and test-other sets.

2. MODEL STRUCTURE

The end-to-end model structure used in this work is very simi-
lar to that of Deep Speech 2 (DS2) [6]. It is mainly composed
of 1) a stack of convolution layers in the front-end for fea-
ture extraction, and 2) a stack of recurrent layers for sequence
modeling. The structure of recurrent layers is the same as in
DS2, and we illustrate the modifications in convolution layers
in this section.

We choose to use time and frequency convolution (i.e. 2-
D convolution) as the front-end of our model, since it is able
to model both the temporal transitions and spectral variations
in speech utterances. We use depth-wise separable convolu-
tion [14, 15] for all the convolution layers, due to its computa-
tional efficiency and performance advantage [15]. The depth-
wise separable convolution is implemented by first convolv-
ing over the input channel-wise, and then convolve with 1×1
filters with the desired number of output channels. Stride size
only influences the channel-wise convolution; the following
1× 1 convolutions always have stride size of one. More pre-
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Fig. 1. Model architecture of our end-to-end speech model.
Different colored blocks represent different layers as shown
on the right, the lightning symbol indicates dropout happens
between the two layers.

cisely, let x ∈ RF×T×D, c ∈ RW×H×D and w ∈ RD×N
denote an input sample, the channel-wise convolution and the
1× 1 convolution weights respectively. The depth-wise sepa-
rable convolution with D input channels and N output chan-
nels performs the following operations:

s(i, j, d) =

F−1∑
f=0

T−1∑
t=0

x(f, t, d)c(i− f, j − t, d) (1)

o(i, j, n) =

D−1∑
k=0

s(i, j, k)w(k, n) (2)

where d ∈ {1, . . . , D} and n ∈ {1, 2, . . . , N}, s is the
channel-wise convolution result, and o is the result from
depth-wise separable convolution. In addition, we add a
residual connection [16] between the input and the layer
output for the depth-wise separable convolution to facilitate
training.

Our model is composed of six convolution layers – one
standard convolution layer that has larger filter size, followed
by five residual convolution blocks [16]. The convolution fea-
tures are then fed to four bidirectional gated recurrent units
(GRU) [17] layers, and finally two fully connected layers that
make the final per-character prediction. The full end-to-end
model structure is illustrated in Fig. 1.

3. MODEL OBJECTIVE

3.1. Maximum Likelihood Training

Connectionist temporal classification (CTC) [18] is a popular
method for doing maximum likelihood training on sequence
labeling tasks, where the alignment information is not pro-
vided in the label. The alignment is not required since CTC
marginalizes over all possible alignments, and maximizes the
likelihood P (y|x). It achieves this by augmenting the orig-
inal label set L to set Ω = L ∪ {blank} with an additional
blank symbol. A mappingM is then defined to map a length
T sequence of label ΩT to L≤T by removing all blanks and
repeated symbols along the path. The likelihood can then be
recovered by

P (y′|x) =
∏
t

P (y′t|x), y′t ∈ ΩT

P (y|x) =
∑

y′∈M−1(y)

P (y′|x)

where x, y and y′ denote an input example of length T , the
corresponding label of length ≤ T and one of the augmented
label with length T .

3.2. Policy Learning

The log likelihood reflects the log probability of getting the
whole transcription completely correct. What it ignores are
the probabilities of the incorrect transcriptions. In other
words, all incorrect transcriptions are equally bad, which is
clearly not the case. Furthermore, the performance metrics
typically aim to reflect the plausibility of incorrect predic-
tions. For example, WER penalizes less for transcription that
has less edit distance to the ground truth label. This results in
a disparity between the optimization objective of the model
and the (commonly discrete) evaluation criteria. This mis-
match is mainly attributed to the inability to directly optimize
the criteria.

One way to remedy this mismatch is to view the above
problem in the policy learning framework. In this framework,
we can view our model as an agent and the training samples as
the environment. The parameters of the model θ defines a pol-
icy Pθ(y|x), the model interacts with the environment by fol-
lowing this policy. The agent then performs an action based
on its current state, in which case the action is the generated
transcription and the state is the model hidden representation
of the data. It then observes a reward that is defined from
the evaluation metric calculated on the current sample (e.g.
1−WER for the current transcription). The goal of learning
is to obtain a policy that minimizes the negative expected re-
ward:

Lp(θ) = −Eys∼Pθ(y|x)[r(y
s)] (3)

where r(·) denotes the reward function. Gradient of eq. 3 can
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be obtained through REINFORCE [12] as

∇θLp(θ) = −Eys∼Pθ(y|x)[r(y
s)∇θ logPθ(y

s|x)] (4)
≈ −r(ys)∇θ logPθ(y

s|x) (5)

Eq. 5 shows the Monte Carlo approximation of the gradi-
ent with a single example, which is a common practice when
training model with stochastic gradient descent.

The policy gradient obtained from eq. 5 is often of high
variance, and the training can get unstable. To reduce the
variance, Rennie et al. [10] proposed self-critical sequence
training (SCST). In SCST, the policy gradient is computed
with a baseline, which is the greedy output from the model.
Formally, the policy gradient is calculated using

∇θLp(θ) = −Eys∼Pθ(y|x)[(r(y
s)− r(ŷ))∇θ logPθ(y

s|x)]
(6)

≈ − (r(ys)− r(ŷ))∇θ logPθ(y
s|x) (7)

where ŷ is the greedy decoding output from the model for the
input sample x.

3.3. Multi-objective Policy Learning

A potential problem with policy gradient methods (including
SCST) is that the learning can be slow and unstable at the be-
ginning of training. This is because it is unlikely for the model
to have reasonable output at that stage, which leads to im-
plausible samples with low rewards. Learning will be slow in
case of small learning rate, and unstable otherwise. One way
to remedy this problem is to incorporate maximum likelihood
objective along with policy gradient, since in maximum like-
lihood the probability is evaluated on the ground truth targets,
and hence will get large gradients when the model output is
incorrect. This leads to the following objective for training
our end-to-end speech model:

L(θ) =− logPθ(y|x) + λLscst(θ) where (8)
Lscst(θ) =− {g(ys,y)− g(ŷ,y)} logPθ(y

s|x)

where g(·, ·) is the reward function and λ ∈ (0,+∞) is the
coefficient that controls the contribution from SCST. In our
case we choose g(·,y) = 1 − max(1,WER(·,y)). Training
with eq. 8 is also efficient, since both sampling and greedy
decoding is cheap. The only place that might be computation-
ally more demanding is the reward calculation, however, we
only need to compute it twice per batch of examples, which
adds only a minimal overhead.

4. EXPERIMENTS

We evaluate the proposed objective by performing experi-
ments on the Wall Street Journal (WSJ) and LibriSpeech [19]
datasets. The input to the model is a spectrogram computed
with a 20ms window and 10ms step size. We first normalize

each spectrogram to have zero mean and unit variance. In ad-
dition, we also normalize each feature to have zero mean and
unit variance based on the training set statistics. No further
preprocessing is done after these two steps of normalization.

We denote the size of the convolution layer by the tuple
(C, F, T, SF, ST), where C, F, T, SF, and ST denote number of
channels, filter size in frequency dimension, filter size in time
dimension, stride in frequency dimension and stride in time
dimension respectively. We have one convolutional layer
with size (32,41,11,2,2), and five residual convolution blocks
of size (32,7,3,1,1), (32,5,3,1,1), (32,3,3,1,1), (64,3,3,2,1),
(64,3,3,1,1) respectively. Following the convolutional layers
we have 4 layers of bidirectional GRU RNNs with 1024 hid-
den units per direction per layer. Finally, we have one fully
connected hidden layer of size 1024 followed by the output
layer. Batch normalization [20] is applied to all layers’ pre-
activations to facilitate training. Dropout [21] is applied to
inputs of each layer, and for layers that take sequential input
(i.e. the convolution and recurrent layers) we use the dropout
variant proposed by Gal and Ghahramani [22]. The convo-
lutional and fully connected layers are initialized uniformly
following He et al. [23]. The recurrent layer weights are
initialized with a uniform distribution U(−1/32, 1/32). The
model is trained in an end-to-end fashion to minimize the
mixed objective as illustrated in eq. 8. We use mini-batch
stochastic gradient descent with batch size 64, learning rate
0.1, and with Nesterov momentum 0.95. The learning rate is
reduced by half whenever the validation loss has plateaued.
We set λ = 0.1 at the beginning of training, and increase it to
1 after the model has converged (i.e. the validation loss stops
improving). The gradient is clipped [24] to have a maximum
`2 norm of 1. For regularization, we use `2 weight decay of
10−5 for all parameters. Additionally, we apply dropout for
inputs of each layer (see Fig. 1). The dropout probabilities
are set as 0.1 for data, 0.2 for all convolution layers, and 0.3
for all recurrent and fully connected layers. Furthermore, we
also augment the audio training data through random pertur-
bations of tempo, pitch, volume, temporal alignment, along
with adding random noise.

4.1. Effect of Policy Learning

To study the effectiveness of our multi-objective policy learn-
ing, we perform experiments on both datasets with various
settings. The first set of experiments was carried out on the
WSJ corpus. We use the standard si284 set for training, dev93
for validation and eval92 for test evaluation. We use the pro-
vided language model and report the result in the 20K closed
vocabulary setting with beam search. The beam width is set
to 100. Results are shown in table 1. Both policy gradient
methods improve results over baseline. In particular, the use
of SCST results in 13.8% relative performance improvement
on the eval92 set over the baseline.

On LibriSpeech dataset, the model is trained using all 960
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Method dev93 eval92
CER WER CER WER

Baseline 4.07% 9.93% 2.59% 6.42%
Policy (eq. 5) 3.71% 9.46% 2.31% 5.85%
Policy (eq. 7) 3.52% 9.21% 2.10% 5.53%

Table 1. Performance from WSJ dataset. Baseline denotes
model trained with CTC only; policy indicates model trained
using the multi-objective policy learning. Equation in paren-
thesis indicates the way used to obtain policy gradient.

Dataset Baseline Policy

dev-clean CER 1.76% 1.69%
WER 5.33% 5.10%

test-clean CER 1.87% 1.75%
WER 5.67% 5.42%

dev-other CER 6.60% 6.26%
WER 14.88% 14.26%

test-other CER 6.58% 6.25%
WER 15.18% 14.70%

Table 2. Performance from LibriSpeech dataset. Policy de-
notes model trained with multi-objective shown in eq. 8.

Method WER

Hannun et al. [25] 14.10 %
Bahdanau et al. [7] 9.30%
Graves and Jaitly [4] 8.20%
Wu et al. [26] 8.20%
Miao et al. [5] 7.34%
Chorowski and Jaitly [27] 6.70%
Human [6] 5.03%
Amodei et al. [6]* 3.60%
Ours 5.53%
Ours (LibriSpeech) 4.67%

Table 3. Comparative results with other end-to-end methods
on WSJ eval92 dataset. LibriSpeech denotes model trained
using LibriSpeech dataset only, and test on WSJ. Amodei et
al. used more training data.

hours of training data. Both dev-clean and dev-other are used
for validation and results are reported in table 2. The provided
4-gram language model is used for final beam search decod-
ing. The beam width is also set to 100 for decoding. Overall,
a relative ≈ 4% performance improvement over the baseline
is observed.

Method test-clean test-other

Collobert et al. [28] 7.20% -
Amodei et al. [6]* 5.33% 13.25%
ours 5.42% 14.70%

Table 4. Word error rate comparison with other end-to-end
methods on LibriSpeech dataset. Amodei et al. used more
training data.

4.2. Comparison with Other Methods

We also compare our performance with other end-to-end
models. Comparative results from WSJ and LibriSpeech
dataset are illustrated in tables 3 and 4 respectively. Our
model achieved competitive performance with other meth-
ods on both datasets. In particular, with the help of policy
learning we achieved similar results as Amodei et al. [6]
on LibriSpeech without using additional data. To see if the
model generalizes, we also tested our LibriSpeech model on
the WSJ dataset. The result is significantly better than the
model trained on WSJ data (see table 3), which suggests
that the end-to-end models benefit more when more data is
available.

5. CONCLUSION

In this work, we try to close the gap between the maximum
likelihood training objective and the final performance metric
for end-to-end speech models. We show this gap can be re-
duced by using the policy gradient method along with the neg-
ative log-likelihood. In particular, we apply a multi-objective
training with SCST to reduce the expected negative reward
that is defined by using the final metric. The joint training is
computationally efficient. We show that the joint training is
effective even with single sample approximation, which im-
proves the relative performance on WSJ and LibriSpeech by
13% and 4% over the baseline.
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