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ABSTRACT

Connectionist temporal classification (CTC) is a popular se-
quence prediction approach for automatic speech recognition
that is typically used with models based on recurrent neu-
ral networks (RNNs). We explore whether deep convolu-
tional neural networks (CNNs) can be used effectively instead
of RNNs as the “encoder” in CTC. CNNs lack an explicit
representation of the entire sequence, but have the advan-
tage that they are much faster to train. We present an explo-
ration of CNNs as encoders for CTC models, in the context of
character-based (lexicon-free) automatic speech recognition.
In particular, we explore a range of one-dimensional convolu-
tional layers, which are particularly efficient. We compare the
performance of our CNN-based models against typical RNN-
based models in terms of training time, decoding time, model
size and word error rate (WER) on the Switchboard Eval2000
corpus. We find that our CNN-based models are close in per-
formance to LSTMs, while not matching them, and are much
faster to train and decode.

Index Terms— Conversational speech recognition, con-
nectionist temporal classification, convolutional neural net-
works, long short-term memory, lexicon-free recognition

1. INTRODUCTION

In recent automatic speech recognition research, two types
of neural models have become prominent: recurrent neural
network (RNN) encoder-decoders (“sequence-to-sequence”
models) [1, 2, 3] and connectionist temporal classification
(CTC) models [4, 5, 6, 7, 8]. Both types of models perform
well, but CTC-based models are more common in large state-
of-the-art systems. Among their advantages, CTC models are
typically faster to train than encoder-decoders, because they
lack the RNN-based decoder.

Most CTC-based models are based on variants of recur-
rent Long Short-Term Memory (LSTM) networks, sometimes
including convolutional or fully connected layers in addition
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to the recurrent ones. More recently, a few purely convolu-
tional approaches to CTC [9, 10] have been demonstrated to
match or outperform LSTM counterparts. Purely convolu-
tional networks have the advantage that they can be trained
much faster, since all frames can be processed in parallel,
whereas in recurrent networks the frames within an utterance
cannot be naturally distributed across multiple processors.
We take a further step toward all-convolutional CTC
models by exploring a variety of convolutional architectures
trained with the CTC loss function and evaluating on conver-
sational telephone speech (prior work evaluated on TIMIT,
Wall Street Journal, and a corporate data set [9, 10]). Previous
work with convolutional CTC models has mainly considered
2-D convolutional layers. Here we study 1-D convolutions,
which are more efficient and perform similarly. 1-D convo-
lutions are similar to time-delay neural networks (TDNNs),
which have traditionally been used with HMMs [11, 12].
While the ideas should apply to any CTC-based model
and task, here we consider the task of lexicon-free conversa-
tional speech recognition using character-based models. We
find that our best convolutional models are close to, but not
quite matching, the best LSTM-based ones. However, the
CNNs can be trained much faster, so that given a fixed train-
ing time budget (within a wide range), convolutional models
typically outperform recurrent ones. Our trained CNN mod-
els also convert speech-to-text much faster than their trained
recurrent counterparts. As the research community consid-
ers increasingly large tasks, such as whole-word CTC mod-
els [13, 14], computational efficiency is often a concern, es-
pecially with limited hardware resources. The efficiency of
CNNs makes them an attractive option in these settings.

2. MODEL ARCHITECTURE

CTC is an approach to sequence labeling that uses a neu-
ral “encoder”, which maps from an input sequence of frame
features x = (z1,22,...,o7) to a sequence of hidden state
vectors h;, followed by a softmax to produce posterior prob-
abilities of frame-level labels (referred to as “CTC labels™)
p(me|he) for each label 7, € C. The posterior probability of a
complete frame-level label sequence is taken to be the product
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Fig. 1: CNN encoders, with filter size noted in each block.
We have tuned N and K (time filter size) in our experiments.
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The CTC label set C consists of all of the possible true out-
put labels (in our case, characters) plus a “blank” symbol
¢. Given a CTC label sequence, the hypothesized final label
sequence is given by collapsing consecutive identical frame
CTC labels and removing blanks. We use B(7) to denote the
collapsing function. All of the model parameters are learned
jointly using the CTC loss function, which is the log posterior
probability of the training label sequence z = z1,25..., 2L,
given input sequence X,

logp(zlx) = log Y  p(nx) @)
T€EB~1(z)

= log >, [le(mlh) G
TeB~1(z) t

Model parameters are learned using gradient descent; the gra-
dient can be computed via a forward-backward technique [4].

2.1. Decoding

Our CTC models operate at a character level. We use the
special blank symbol ¢ along with a vocabulary of 45 char-
acters which appear in the raw SWB corpus (26 letters, 10
digits, space, &, ’, -, [laughter], [vocalized-noise], [noise], /
and _). These transcriptions were inherited from a Switch-
board Kaldi [15] setup without text normalization. We re-
move punctuation and noise tokens during post-processing.
Decoding with CTC models can be done in a number of ways,
depending on whether one uses a lexicon and/or a word- or
character-level language model (LM) [16]. Here we focus on

two simple cases, greedy decoding with no language model
and beam-search decoding with an n-gram character LM.

To decode without a language model, we take the most
likely CTC output label at each frame and collapse the result-
ing frame label sequence to the corresponding character se-
quence. We also consider decoding with an n-gram language
model (n = 7,9) using a beam search decoding procedure.
We decode with the objective,

# = argmax p(k)* k|’ Hp(ﬂ'tlht)
t

mell

where k = B(w), |k| denotes the length of k, and «, 3 are
tunable parameters. The final decoded output is Z = B(7).
Our beam-search method is the algorithm described in [5].!

2.2. Encoders

We refer to the neural network that maps from the input x
to state vectors h as an encoder. We consider both a typical
recurrent LSTM encoder and various convolutional encoders.
Our input vectors are 40 log mel frequency filterbank features
(static) concatenated with their first-order derivatives (delta).

2.2.1. LSTMs

Our recurrent encoder is a multi-layer bi-directional LSTM
with a dropout layer between consecutive layers (with dropout
rate 0.1). We concatenate every two consecutive input vectors
(as in [2]), which reduces the time resolution by a factor of
two and speeds up both the forward and backward pass.

2.2.2. 1-D CNNs

For our all-CNN encoders, we consider 1-D CNN structures
that convolve across time only. Each of the input acoustic
feature dimensions is treated as a separate input channel. The
first layer is a convolution followed by max-pooling across
time (with a stride size 2), followed by several convolutional
layers, and ending with two 512-unit fully connected layers
and a final projection layer. Each convolution has 256 chan-
nels. We add batch normalization after every convolution, and
include residual connections between every pair of convolu-
tional layers after the max-pool [17, 18]. A ReLU [19] non-
linearity is used after every convolution, similar to the resid-
ual learning blocks in [17] (referred to as “ResBlocks (RBs)”
in the rest of the paper). Fig. 1 portrays our architecture.

3. EXPERIMENTAL SETTING

3.1. Data Setup

We use the Switchboard corpus (LDC97S62) [20], which
contains roughly 300h of conversational telephone speech, as
our training set. Following the Kaldi recipe [15], we reserve

'We account for <s> and </ s> tokens during beam-search decoding (not
explicitly mentioned in the beam search algorithm in [5]).
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Table 1: Development set WER for 1-D CNNs vs. number
of layers. b denotes batch-size. Each model is trained for 40
epochs with early stopping. ¢, /tcp are hours / epoch.

Model # Weights | WER % | b | tye/tepu(h)
5/320 LSTM 11.1M | 2854 | 64 33/5.8
10*1, 8 RBs 11.1M 36.71 32 09/2.2
10*1, 11 RBs 15.1IM | 32,67 | 32 1.0/25
10*1, 14 RBs 19.0M | 3092 | 32 1.1/28
10*1, 17 RBs 22.9M 29.82 32 1.5/3.5

the first 4K utterances as a validation set. Since the training
set has several repetitions of short utterances (like “uh-huh”),
we remove duplicates beyond a count threshold of 300. The
final training set has about 192K utterances. For evaluation,
we use the HUBS Eval2000 data set (LDC2002S09), con-
sisting of two subsets: Switchboard (SWB), which is similar
in style to the training set, and CallHome (CH), which con-
tains conversations between friends and family.> Our input
filterbank features along with their deltas are normalized with
per-speaker mean and variance normalization.

3.2. Training Setup

All models are trained on a single Titan X GPU with two
supporting CPU threads, using TensorFlow r1.1 [21] and
optimized using Adam [22] with a mini-batch size of 64 for
LSTM (BasicLSTMCel1l) models and 32 for CNN models
(unless otherwise mentioned). For the LSTM models, we use
a learning rate of 0.001. For the CNN models, a smaller learn-
ing rate of 0.0002 was preferred. The learning rate is decayed
by 5% whenever validation loss doesn’t decrease over two
epochs. We report average training time per epoch for each
model as both wall-clock hours (t,,.) and CPU-hours (f.,).

4. RESULTS
4.1. LSTM Baseline

As abaseline, we train a 5-layer 320 hidden unit bi-directional
recurrent neural network using LSTMs, similar to the archi-
tecture described in [16]. With a batch-size of 64, our LSTM
needs t,,. = 3.3 hours / epoch and £.,,, = 5.8 hours / epoch.
On a batch-size of 32, the LSTM takes t,,. = 8.7 hours /
epochs and ¢, = 14.8 hours / epoch.

4.2. 1-D CNNs

We conduct experiments on 1-D CNNs investigating variance
in performance and time / epoch with network depth and filter
size. These are given in Table 1 and Table 2. We notice that
for the same number of trainable parameters deeper networks

2Qur Eval2000 setup has 4447 utterances, 11 utterances fewer than in
some other papers. This discrepancy could result in an Eval2000 WER dif-
ference of 0.1-0.2%.

Table 2: Development set WER for 1-D CNNGs vs. filter size,
each trained for 40 epochs with early stopping. The first
two experiments vary filter size / depth at a constant number
of trainable parameters (approximately for 15*1 filter). The
third experiment varies filter size at a constant depth.

Model # Weights | WER % | tyc/tepu(h)
5*%1, 16 RBs 11.1M | 33.26 1.0/23
10*1, 8 RBs 11.1M 36.71 09/2.2
15*%1, 5 RBs 10.5M | 43.18 0.8/2.1
15*1, 6 RBs 12.4M 39.83 09/24
5*%1, 28 RBs 19.0M | 29.65 1.4/3.5
10*1, 14 RBs 19.0M 30.92 1.1/2.8
15*%1,9 RBs 18.3M 35.45 1.1/3.1
15*1, 10 RBs 20.3M 33.94 1.1/3.0
5*%1, 14 RBs 9.8M 35.34 1.0/22
10*1, 14 RBs 19.0M | 30.92 1.1/2.8
15*1, 14 RBs 28.1M 31.36 1.6/3.8

Table 3: Greedy decoding time on the Eval2000 corpus (4447
utterances). b (batch-size) = 1 is practical in real-time sys-
tems since it decodes one utterance at a time. t,c/t .., repre-
sent total decoding time in seconds averaged over three runs.

Model # Weights twe ! tepu (S)
5/320 LSTM 11.1M 1| 1813 / 3667
5/320 LSTM 11.1IM | 32 87/ 180
5/320 LSTM 11.1M | 64 44/ 92
5*1, 28 RBs, CNN 19.0M 1 115/ 135
5*1, 28 RBs, CNN 19.0M | 32 17/ 18
5*1, 28 RBs, CNN 19.0M | 64 15/ 16

with smaller filters seem to perform the best. We noticed
that smaller-filter deeper architectures over-fit less when com-
pared to larger-filter architectures with the same number of
trainable parameters. For a fixed network depth, a mid-sized
filter performed best. We present a graph of convergence vs
wall-clock time in Fig. 2. As expected, the CNNs train faster
than LSTMs, and significantly faster at the same batch-size.
We also notice significant speed-ups during greedy decoding
of the Eval2000 corpus, as shown in Table 3.

We show some of the learned filters in Fig. 3. These fil-
ters show that the network learns derivative-like filter patterns
across different input channels. Our 1-D convolution struc-
ture with filter size K{*1 can be viewed as similar to a 2-D
convolution with filter size K*80, since the 1-D filters are
learned jointly. We also note the strong relation between filter
patterns learned in the static and delta regions.

4.3. Language Model Decoding

We evaluate our baseline LSTM and best performing CNN
(5*1 filter with 28 RBs) on the Eval2000 corpus. We train
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Table 4: Final test set results on Eval2000.

Model SWB | CH| EV
5/320 LSTM + no LM 27.7 | 475 | 37.6
5/320 LSTM + 7-g 20.0 | 38.5 | 29.3
5/320 LSTM + 9-g 19.7 | 38.2 | 29.0
5%*1 28 RBs, CNN+noLM | 27.9 | 48.6 | 38.3
5%1 28 RBs, CNN + 7-g 21.7 | 404 | 31.1
5*%1 28 RBs, CNN + 9-g 21.3 | 40.0 | 30.7
Maas [5] + no LM 38.0 | 56.1 | 47.1
Maas [5] + 7-g 27.8 | 43.8 | 359
Maas [5] + RNN 21.4 | 40.2 | 30.8
Zenkel [16] + no LM 304 | 44.0 | 37.2
Zenkel [16] + RNN 18.6 | 31.6 | 25.1
Zweig [8] + no LM 259 | 38.8 -
Zweig [8] + n-g 19.8 | 32.1 -

each model to 50 epochs with early stopping on validation
data. We augment our models with 7-gram and 9-gram
character-level language models (LMs). These n-gram mod-
els were trained only on the SWB training corpus transcripts
using SRILM [23]. For all experiments, a beam size of 200
was used. We choose o = 0.6 and § = 1.5 after tuning on
validation data. Our results are presented in Table 4. Notice
that in the no LM results our CNNs are only 0.2% behind on
the SWB part of Eval2000, but a larger 1.1% behind on CH.
After LM decoding, the differences are more pronounced.
This indicates that CNNs seem to over-fit more on the train-
ing data (which is similar to the SWB part of Eval2000) and
show less improvement with the help of LMs.

5. CONCLUSIONS

We take a further step towards making all-convolutional CTC
architectures practical for speech recognition. In particular
we have explored 1-D convolutions with CTC, which are par-
ticularly time-efficient. Our CNN-based CTC models are still
slightly behind LSTMs in performance, but train and decode
significantly faster. Further work in this space could include
additional model variants and regularizers, as well as study-
ing the relative merits of all-convolutional models in larger
systems operating at the word level, where the efficiency ad-
vantages are expected to be even more important. In addition,
CNN-based speech recognition has also been explored in the
context of different training and decoding algorithms, such as
the auto segmentation criterion [24]. It would be interesting to
conduct a broader study considering the interaction of CNNs
with different training and decoding approaches.
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Fig. 2: Comparison of convergence vs. wall-clock time.
5/320 denotes the 5-layer 320-unit LSTM, b = batch size.
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