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ABSTRACT

End-to-end acoustic models, such as connectionist tem-
poral classification (CTC) and the attention model, have been
studied, and their speech recognition accuracies come close
to those of conventional deep neural network (DNN)-hidden
Markov models. However, most high-performance end-to-
end models are not suitable for real-time (streaming) speech
recognition because they are based on bidirectional recurrent
neural networks (RNNs). In this study, to improve the perfor-
mance of unidirectional RNN-based CTC, which is suitable
for real-time processing, we investigate the knowledge distil-
lation (KD)-based model compression method for training a
CTC acoustic model. we evaluate a frame-level KD method
and a sequence-level KD method for CTC model. The speech
recognition experiments on Wall Street Journal tasks demon-
strate that, the frame-level KD worsens the WERs of unidirec-
tional CTC model, whereas sequence-level KD can improve
the WERs of the model.

Index Terms— Speech recognition, acoustic model, con-
nectionist temporal classification, knowledge distillation,
long short-term memory

1. INTRODUCTION

End-to-end acoustic models, such as connectionist temporal
classification (CTC) [1, 2] and the attention model [3, 4]
have been studied for automatic speech recognition (ASR)
[5, 6, 7, 8, 9, 10, 11, 12, 13]. One advantage of the end-to-end
model is its simplicity in the decoding process because they
do not use the hidden Markov model (HMM). Miao et al.
[7] proposed an end-to-end speech recognition framework
that applied a CTC acoustic model to a weighted finite-state
transducer (WFST) [14], and demonstrated a decoding speed
that was over three times faster than a conventional deep neu-
ral network (DNN)-HMM-based WFST. The improvement
of recognition accuracy has also been studied, and the state-
of-the-art model outperforms a DNN-HMM baseline model
in recognition accuracy without using any language models
[13]. However, most high-performance end-to-end models
are not suitable for real-time (streaming) ASR, despite their
simple decoding process, because they are based on bidi-

rectional recurrent neural networks (RNNs), which require a
whole utterance to predict a frame output and thus cause high
latency.

Unidirectional RNN-based CTC is one of the simplest
implementations of the real-time end-to-end ASR; however,
its recognition accuracy is worse than those of bidirectional
high-performance models. There are some studies to improve
that unidirectional model [15, 16]. In [15], they proposed a
low-latency sequence-to-sequence model that can recognize
a speech for every block of frames. In [16], they used RNN
transducer (RNN-T) [17], which is an extension to the CTC,
and showed promising results with their optimized RNN-T.
In this paper, we use an easily implementable unidirectional
CTC without modifying the model, and attempt to improve its
performance by using the approach of knowledge distillation
(KD).

KD [18, 19] is a model compression method for DNNs,
and often used to bridge the gap of performance between a
smaller model and a larger model. The KD method trains
a smaller model (called student model) using the output of
a larger model (called teacher model) as training labels so
as to transfer the knowledge of the teacher model to the stu-
dent model. The effectiveness of KD has been confirmed in
speech recognition tasks [20, 21, 22, 23]. Fukuda et al. [23]
showed that KD can improve the word error rate (WER) of
a student convolutional neural network (CNN) using a VGG
network [24] and a long short-term memory (LSTM) network
[25] as teacher models. An interesting point of this work is
that KD successfully transferred the sequential information of
an LSTM to a CNN without recurrent structures. From that
observation, we expect that KD can also transfer the knowl-
edge of a bidirectional LSTM (bi-LSTM) to a unidirectional
LSTM (uni-LSTM).

In previous studies, KD has been mainly applied through
frame-level cross-entropy (CE) training, that is, for training
CE-DNN-HMMs (we call it frame-level KD). There are also
studies of KD technique for sequence training, such as atten-
tion model [26] and maximum mutual information (MMI)-
based training [27] (we call it sequence-level KD). The frame-
level KD has been applied to a CTC acoustic model in [28];
however, the performance degraded compared with the CTC
model directly trained using correct labels. The sequence-
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level KD has not been applied to the CTC model to the best of
our knowledge. In this paper, we explore efficient methods to
apply the KD technique to a CTC acoustic model by compar-
ing the frame-level KD and the sequence-level KD. We use a
uni-LSTM-based CTC model (uni-LSTM-CTC) as a student
model and a bi-LSTM-based CTC model (bi-LSTM-CTC) as
a teacher model. In the frame-level KD framework, similar to
the previous work of [28], we train a student uni-LSTM under
the CE criteria using frame-level outputs of the teacher CTC
model. In the sequence-level KD framework, following the
method proposed in [26], we extract the hypotheses of the la-
bel sequence and their posterior probability estimated by the
teacher CTC model, and a student CTC model is trained using
the hypotheses under sequence-level CE criteria. We evaluate
these KD methods on Wall Street Journal (WSJ) large vocab-
ulary continuous speech recognition (LVCSR) tasks.

2. CONNECTIONIST TEMPORAL
CLASSIFICATION

For general speech recognition, we need to map a sequence
of label estimated for each frame (called ‘path’ and denoted
as π) into a label sequence (denoted as l) of length equal to
or less than the number of frames. In the CTC framework
[1], a path is converted into a label sequence by introducing
the deletion of repeated labels and insertion of blank labels
(i.e., “no label”). We call this conversion “CTC mapping”
with function B, where l = B(π). Because there are multiple
possible paths mapped into an identical label sequence, the
conditional probability of the label sequence l given the input
sequence x is defined as the sum of the probabilities of all
possible corresponding paths:

p(l|x) =
∑

π∈B−1(l)

p(π|x). (1)

The conditional probability of path π is calculated as follows:

p(π|x) =
Tx∏
t=1

p(k = πt|x). (2)

Here, the posterior probability p(k = πt|x) of label πt of t-th
frame given input sequence x is modeled with an RNN. Tx

denotes the number of frames. The CTC model is trained by
maximizing the likelihood, that is, minimizing the loss func-
tion LCTC defined as

LCTC = −
∑

(x,l)∈Z

ln p(l|x) =
∑

(x,l)∈Z

FCTC(l|x), (3)

where Z denotes the training dataset, and FCTC(l|x) =
− ln p(l|x) is the local loss defined for explanation in Sec-
tion 4.2. The local loss FCTC(l|x) is efficiently computed
using the forward-backward algorithm.

3. KNOWLEDGE DISTILLATION

KD [19] is a model compression method for DNNs. The main
idea of KD is to train a smaller student model using the out-
put of a larger teacher model as training labels (often called
soft labels) such that the student model works like the teacher
model. In the KD framework, first, a teacher model is trained
using the correct label. Then, the student model is trained
using the outputs of the teacher model that corresponds to
training data under the CE criteria as follows:

LKD = −
∑
l

ptea(l|x) ln pstu(l|x), (4)

where ptea(l|x) denotes the posterior probability of label l
given input x estimated by the teacher model (i. e. the output
of the teacher model) and pstu(l|x) is that estimated by the
student model.

Because the CE of the original KD is defined as training
samples (i.e., frames in the ASR task) are independent, we
call the original KD frame-level KD. There are also studies of
KD technique for sequence training, such as attention model
[26] and MMI-based training [27]. In these methods, the stu-
dent model is trained by minimizing the CE between the prob-
ability distributions of the label sequences on a teacher model
and a student model. We call this KD approach sequence-
level KD.

4. KD FOR THE CTC ACOUSTIC MODEL

Before training a student CTC (uni-LSTM-CTC) model, we
train a teacher CTC (bi-LSTM-CTC) model under the con-
ventional CTC training criteria (i.e. Eq. (3)) on the correct
label sequence. Then, using the output of the teacher CTC
that corresponds to the training data, we train the student CTC
model in frame-level or sequence-level KD frameworks.

4.1. Frame-level KD

The frame-level KD for the CTC model is the same frame-
work used in previous works based on the original KD tech-
nique [20, 21, 22, 23], except that, for the CTC model, the
posterior probability of the blank label is also considered.
Figure 1 shows the overview. We extract the output of the
teacher CTC model given the training data for each frame.
Then, using the teacher’s output as soft labels, we train the
neural network (i.e., uni-LSTM in this work) of the student
CTC model under the CE criteria:

LCTC−KDframe
=−

∑
x∈Z

Tx∑
t=1

∑
k∈K

ptea(k|xt) ln pstu(k|xt). (5)

xt denotes the t-th frame sample in an input sequence x of
length Tx. k denotes a label in the CTC label set K = L ∪
{blank}, where L denotes the original label set. ptea(k|xt)
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Fig. 1. Overview of the frame-level KD for the CTC acoustic
model.

is the posterior probability of label k estimated by the teacher
CTC model, and pstu(k|xt) is the posterior probability esti-
mated by the neural network of the student CTC model.

The frame-level KD has been applied to the CTC model
in [28]. In that report, however, the performance degraded
compared with the CTC model directly trained using correct
labels. We guess the reason is that; as reported in previous
studies [1, 7], the probability of the blank label estimated by
the CTC model is nearly 1.0 in the majority of frames. There-
fore, when we use the frame-level criteria, only few frames
that have a higher probability of non-blank labels might be
used effectively for training the student model.

4.2. Sequence-level KD

Figure 2 shows the overview of the sequence-level KD for the
CTC model. The main approach is the same as that proposed
in [26], and we apply that approach to the CTC’s training
framework. We extract the hypotheses of the label sequence
and their posterior probabilities estimated by the teacher CTC
model. Then, using the hypotheses and posterior probabili-
ties, we train a student CTC model under sequence-level CE
criteria:

LCTC−KDseq = −
∑
x∈Z

∑
h∈H

ptea(h|x) ln pstu(h|x). (6)

h denotes a hypothesis of the label sequence in the set of all
possible hypotheses H. ptea(h|x) and pstu(h|x) are the pos-
terior probabilities of hypothesis h estimated by the teacher
CTC model and the student CTC model, respectively. Since
Eq. (6) can be expressed as

LCTC−KDseq
=

∑
x∈Z

∑
h∈H

ptea(h|x)FCTC(h|x), (7)
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Fig. 2. Overview of the sequence-level KD for the CTC
acoustic model.

the sequence-level KD criteria for CTC model can be summa-
rized as the weighted mean of the original CTC loss regarding
each hypothesis of the label sequence.

Since extracting ptea(h|x) for all possible hypotheses is
unrealistic, we approximate them using N -best hypotheses as
follows:

L̃CTC−KDseq
=

∑
x∈Z

N∑
n=1

p̃tea(hn|x)FCTC(hn|x), (8)

where hn denotes the n-th hypothesis in the N -best hypothe-
ses, and p̃tea(hn|x) denotes the posterior probability approx-
imated as

p̃tea(hn|x) =
ptea(hn|x)∑N
n=1 ptea(hn|x)

. (9)

In our experiments, we used (N = 10)-best hypotheses.
Depending on the approximate precision, the use of Eq.

(8) has a risk that it trains a student model with inadequate
labels. In an extreme case, when the Eq. (8) is used on N = 1,
the student model will be trained using hard labels, which
might include incorrect labels. To avoid this problem, we use
the interpolation between Eq. (8) and the original CTC loss
function using correct labels as follows:

L̃′
CTC−KDseq

= (1− q)LCTC + qL̃CTC−KDseq , (10)

where q ∈ (0, 1] is a tunable parameter.
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Table 1. WERs [%] on “eval92” (trained on “train si84”).
Acoustic Model (train si84, 15hours) q WER
bi-LSTM-CTC - 10.35
uni-LSTM-CTC - 11.77
uni-LSTM-CTC with frame-level KD - 16.04
uni-LSTM-CTC 1.0 11.54

with sequence-level KD (10-best) 0.9 11.25
0.8 11.06
0.7 10.83
0.6 11.20

5. EXPERIMENTS

5.1. Experimental conditions

We evaluated the KD approaches for the CTC acoustic model
on WSJ LVCSR tasks. The experiments were conducted on
two training datasets: (1) only “WSJ0 (LDC93S6B) [29]” (15
hours, known as “train si84” in the Kaldi recipe [30]); and (2)
“WSJ0” and “WSJ1 (LDC94S13B) [31]” (81 hours, known as
“train si284” in the Kaldi recipe). For both experiments, we
used a dataset called “eval92” [32] for evaluation.

We extracted 40-dimensional mel-filterbank features with
their first and second-order derivatives (FBANK+∆+∆∆,
120 dimensions in total) as acoustic features, and the target
labels were defined to include 69 phonemes, two noise marks,
and a blank (72 labels in total). The teacher model and the
student model were a bi-LSTM-CTC and a uni-LSTM-CTC,
respectively. Both networks had three hidden layers and
512 memory cells in each hidden layer. We used the CNTK
toolkit [33] to train models and optimized the model param-
eters using Adam algorithm [34] with an initial learning rate
of 0.0001.

For decoding, we used EESEN software [7], which inte-
grates the CTC acoustic model, lexicon, and language model
on the WFST framework. We used the CMU dictionary as
the lexicon and the 20,000-word vocabulary WSJ pruned lan-
guage model, known as “lm tgpr” in the Kaldi recipe, as the
language model.

In the sequence-level KD method, we also used EESEN
software to extract the (N = 10)-best hypotheses. The
10-best hypotheses were extracted using WFST-based beam-
search. In this process, we used only the token WFST (de-
fined as T.fst in EESEN software), which maps a sequence
of frame-level CTC labels to a single lexicon unit (i.e., a
phoneme in this experiment). Note that we did not use dictio-
nary and language model in this process.

5.2. Results

Table 1 shows the WERs on “train si84” training dataset. As
shown in this table, the WER of uni-LSTM-CTC without
KD was 1.42% higher than that of bi-LSTM-CTC. When we

Table 2. WERs [%] on “eval92” (trained on “train si284”).
Acoustic Model (train si284, 81hours) q WER
bi-LSTM-CTC - 8.70
uni-LSTM-CTC - 10.37
uni-LSTM-CTC with frame-level KD - 12.71
uni-LSTM-CTC

with sequence-level KD (10-best) 0.7 9.57

applied the frame-level KD to the student uni-LSTM-CTC,
the performance worsened further as reported in [28].1 When
we applied the sequence-level KD, the WERs of student
uni-LSTM-CTC were improved. We observed the best per-
formance when the interpolating parameter q (See Eq. (10))
was set to 0.7, and the WER of the student uni-LSTM-CTC
was improved by 0.94%. That means the sequence-level
KD reduced the performance difference between the student
model and the teacher bi-LSTM-CTC by 66.2% relatively. In
the following experiment, we fixed q = 0.7 .2

Table 2 shows the WERs on “train si284” training dataset.
The tendency of the results was similar to that on “train si84”.
The WER of uni-LSTM-CTC without KD was 1.67% higher
than that of bi-LSTM-CTC, and the frame-level KD wors-
ened the performance further. By applying the sequence-level
KD, the WER of the student uni-LSTM-CTC were improved
by 0.80%, and that means the performance difference be-
tween the student model and the teacher model was reduced
by 47.9% relatively.

6. CONCLUSION

To improve the recognition performance of the unidirectional
CTC acoustic model for real-time end-to-end speech recog-
nition, we explored KD methods for training CTC models.
We considered the application of both frame-level KD and
sequence-level KD. Our experiments on the LVCSR tasks
using WSJ dataset show that, the frame-level KD worsened
the WERs of the student uni-LSTM-CTC model, whereas
sequence-level KD improved the WERs of the student model.

We used the 10-best hypotheses because of the limitation
of computational resources. In future work, to analyze the re-
lationship between the number of hypotheses and the perfor-
mance, we will investigate the method to efficiently perform
sequence-level KD with more hypotheses. Additionally, the
recognition accuracy of a student unidirectional CTC model
might be improved further using higher-performance teacher
models. Therefore, we will evaluate the performance of the
KD on various teacher models.

1We also tried using modified criteria, that is, a naive interpolation be-
tween the original CTC loss function (Eq. (3)) and the frame-level KD (Eq.
(5)), but the training failed to converge.

2We used 5% of training data as a development set, and we also observed
the best performance on the development set when we set q = 0.7.
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