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ABSTRACT

This paper addresses end-to-end speech recognition which directly
maps acoustic features to a word sequence. The acoustic-to-word
model is attractive since it does not require an external language
model and an elaborate decoder, resulting in extremely simple and
fast decoding. The apparent drawback of this modeling is sparse-
ness of training data, particularly for less frequent words. In this
paper, we propose a framework complemented with a character-level
model. Joint training of the word-level model with the character-
level model enhances the generality of deep learning of feature
extraction and classification processes, preventing it from over-
fitting. Moreover, the character-level model is used to decode
out-of-vocabulary (OOV) words that are not covered by the word-
level model. Since there are choices of connectionist temporal
classification (CTC) and attention-based models in the end-to-end
recognition, we also explore optimal combination for the hybrid
system. Evaluations on the Corpus of Spontaneous Japanese (CSJ)
show that (1) the acoustic-to-word attention-based model outper-
forms CTC, (2) multitask learning (MTL) with character-level CTC
model is effective, and (3) the hybrid system achieves comparable
or even better accuracy than the standard DNN-HMM system with a
decoding speed faster by a factor of 25.

Index Terms— End-to-end speech recogntion, acoustic-to-
word, attention, connectionist temporal classification (CTC), multi-
task learning

1. INTRODUCTION

Deep neural networks (DNNs) have drastically improved the per-
formance of automatic speech recognition (ASR). It was recently
reported that even human-parity recognition performance can be
achievable for the conversational telephone speech task [1, 2]. How-
ever, in exchange for the excellent performance, these ASR systems
have very complicated architectures consisting of complex decoders,
large language models, and carefully designed pronunciation dictio-
naries. They have a large runtime latency and less portability.

On the other hand, a much simpler architecture of end-to-end
speech recognition has been investigated intensively. It is formulated
to map input acoustic features into a target symbol sequence with re-
current neural networks (RNN) such as LSTMs, without requiring
latent state transition models such as HMMs. There are two major
approaches: one is connectionist temporal classification (CTC) [3, 4,
5, 6] that marginalizes and condenses all possible frame-wise output
symbol sequences, and the other is the encoder-decoder model with
an attention mechanism [7, 8, 9, 10, 11], which first encodes the
input into a frame-wise distributed representation with one LSTM
and then decodes it to a target symbol sequence with another LSTM.
However, the conventional end-to-end systems are still based on sub-
word units, such as phones, syllables and characters, and they still

need a pronunciation lexicon and language model for transducing
audio features into a word sequence [12].

Most recently, several studies [13, 14, 15] investigated end-to-
end speech recognition using whole words as acoustic units. As
a language model is also implicitly embedded in the RNN, this
acoustic-to-word modeling does not require an external language
model. It will realize an extremely simple and fast decoding only
with the RNN. In this paper, we first investigate this modeling with
a Japanese large-vocabulary ASR corpus, comparing the CTC and
attention-based models.

The apparent problem of this approach is sparseness of training
data, since the number of word entries is much larger than that of
the subword units, and the distribution of the occurrence counts of
words is much more unbalanced than that of subword units. Most
critically, there are many entries of infrequent words which cannot
be provided with a sufficient amount of training data. If we eliminate
infrequent words for reliable model training, these words cannot be
decoded in theory.

To address this problem, in this paper, we propose a framework
complemented with a character-level model. This is regarded as a
hybrid system of a word-level model and a character-level model,
which share the network partially. Multitask learning (MTL) of these
models is implemented to improve the generality of the network and
prevent overfitting of the models of less frequent words. We also in-
vestigate possible choices of the auxiliary model including attention-
based model and CTC. The auxiliary character-level model is also
useful for the decoding stage to recover out-of-vocabulary (OOV)
words, which are actually eliminated due to their infrequent occur-
rence. When the word-level model generates a segment of OOV
words, the proposed hybrid system falls back to the character-level
model to get an aligned sequence.

In the rest of the paper, we first review the modeling for end-
to-end speech recognition in Section 2 and the basic concept of
acoustic-to-word model in Section 3. Then, Section 4 gives expla-
nations of the proposed hybrid framework including the multitask
learning and parallel decoding. Experimental evaluations using the
Corpus of the Spontaneous Japanese (CSJ) and Japanese Newspaper
Article Sentences (JNAS) are presented in Section 5.

2. MODELS FOR END-TO-END SPEECH RECOGNITION

We first review two basic approaches to end-to-end speech recogni-
tion. Let X = (x1, ...,xT ) denote a length-T sequence of input
acoustic features. Let y = (y1, ..., yL) denote a length-L sequence
of target labels which usually consist of phones or characters, where
yl ∈ {1, ...,K} and K is the number of target labels.
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2.1. Connectionist Temporal Classification (CTC)

The main idea of CTC is to allow an extra ”blank” label φ in order to
learn a mapping between sequences of different lengths. By insert-
ing a blank label between two consecutive labels and allowing each
label to be repeated, a label sequence y can be expanded to a set
of length-T sequences Ω(y). Inversely, each CTC path π ∈ Ω(y)
can be reduced to the original label sequence y after removing all
repeating labels and blank labels, where π = (π1, ..., πT ) and πt ∈
{1, ...,K} ∪ {φ}.

The CTC loss is defined using the probabilities of all CTC paths
included in Ω(y) as:

p(y|X) =
∑

π∈Ω(y)

p(π|X) =
∑

π∈Ω(y)

T∏
t=1

p(πt|xt) (1)

where the posterior probabilities p(πt|xt) are calculated with a
multi-layer bidirectional RNN.

The CTC loss and its gradient with respect to the network param-
eters are efficiently computed with the forward-backward algorithm.
CTC-based models do not explicitly learn the internal relationship
between labels since they assume that the probability of each label
is independent of others.

2.2. Attention-based encoder-decoder model

An alternative approach to end-to-end mapping between speech and
label sequences is to use the attention-based encoder-decoder archi-
tecture [7, 8, 9, 10, 11]. This architecture has two distinct subnet-
works. One is the encoder subnetwork, which transforms an acoustic
feature sequence to a sequential representation of length T . Based
on this encoded information, the decoder subnetwork predicts a la-
bel sequence whose length, L, is usually shorter than the input. The
decoder uses only a relevant portion of the encoded sequential repre-
sentations for predicting a label at each time step using the attention
mechanism.

The encoder is implemented as a multi-layer bidirectional RNN
such as an LSTM, and the decoder usually consists of a 1-layer of
unidirectional RNN followed by a softmax output layer.

The attention-based model is formulated as follows. The en-
coder transforms X to intermediate representation vectors H =
(h1, ...,hT ). In the following decoding step, the hidden state (mem-
ory) activation of the RNN-based decoder at the l-th time step is
computed as:

sl = Recurrency
(
sl−1, gl,yl−1

)
(2)

where gl and yl−1 denote the ”glimpse” at the l-th time step and the
predicted label at the previous step. The glimpse gl is a weighted
sum of the encoder output sequence as:

gl =
∑
t

αl,tht (3)

where αl,t is an attention weight of ht. It is calculated as:

el,t = Score(sl−1,ht,αl−1) (4)

αl,t = exp(el,t)/

T∑
t′=1

exp(el,t′) (5)

There are many choices for implementation of the score func-
tion (4). In this paper, we adopt the hybrid location and content-
based attention mechanism as follows:

el,t = wT tanh(Wsl−1 + V ht +Ufl,t + b) (6)
f l = F ∗αl−1 (7)

where ∗ denotes 1-dimensional convolution. Using gl and sl−1, the
decoder predicts the next label yl as:

yl ∼ Generate (sl−1, gl) (8)

where the Generate function is implemented as:

R tanh (Psl−1 +Qgl) (9)

The objective function for training the attention models is a cross
entropy loss calculated between the predicted label sequences and
the target correct label sequences. In end-to-end speech recognition
using the attention model, we use special labels for denoting start-
of-sentence (sos) and end-of-sentence (eos). The decoder completes
decoding an utterance when the end-of-sentence is emitted. It is
possible to conduct a beam search to further enhance the recognition
performance.

3. ACOUSTIC-TO-WORD MODELING

Most recently, word-level end-to-end speech recognition is investi-
gated by exploiting bidirectional LSTM-based models [13, 14, 15].
The remarkable advantages of this acoustic-to-word modeling are
its decoding speed and drastically simplified architecture. It does
not require external decoders, language models, and a pronunciation
dictionary. Speech recognition can be conducted simply by picking
up the output of the neural network.

In this acoustic-to-word modeling, we have a choice of CTC and
attention-based models. While Lu et al. [15] investigated encoder-
decoder models, Soltau et al. [14] and Audhkhasi et al. [13] pre-
sented good results with CTC-based models. In theory, an attention-
based model explicitly incorporates contextual information from the
target label sequence in the decoder RNN, while the CTC model
only considers frame-level contexts in the encoder LSTM. Since the
word unit is usually longer than the subword unit, the frame-level
contextual model may not be sufficient and thus the attention-based
model is expected to work better. In this paper, we first investigate
the attention-based model for acoustic-to-word modeling in compar-
ison with the CTC-based model.

On the other hand, the acoustic-to-word modeling has an appar-
ently serious drawback in training. Compared with the conventional
subword-based modeling, the number of word entries is much larger
and the distribution of their occurrence counts is much more un-
balanced. Therefore, it is expected that many words will not have
sufficient training data, leading to overfitting. Audhkhasi et al. [13]
reported that acoustic-to-word models initialized with random val-
ues did not converge when the amount of training data was limited.
Thus, this modeling requires a huge amount of training data, which
may not be available in many languages and application domains.

Another problem inherent to the word-based model is that it can
only decode words covered in the training stage. It is not possi-
ble to add new words to the dictionary by providing their baseforms
as with subword unit modeling. Furthermore, as addressed above,
many word entries with a lower occurrence count need to be elim-
inated due to insufficient training data, thus they cannot be recog-
nized, either.

To solve these problems, in this paper, we propose to comple-
ment acoustic-to-word modeling with character-level modeling.
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Fig. 1. MTL loss is a weighted sum of the CTC loss and the loss of
the attention model.

4. WORD ATTENTION MODEL COMPLEMENTED WITH
CHARACTER CTC MODEL

4.1. Multitask learning with character-level CTC loss

In order to mitigate the problem in the training of the word-level
model, it is straightforward to use a subword-level model as a basis
or initialization. Audhkhasi et al. [13] pre-trained the lower part of a
word-level model using another CTC loss criterion with subwords as
acoustic units. It is also reasonable to use subword-level supervision
for training a word-level model as Toshniwal et al. used senone-
level supervision for subword-level training [16]. Meanwhile, Kim
et al. [17] showed that an attention-based model could be improved
by enforcing monotonic alignment between speech and label se-
quences. This was done by adding another output layer after the
encoder with an auxiliary task with a CTC loss.

Taking these findings into account, we propose multitask learn-
ing (MTL), in which the word-level attention model is comple-
mented with a character-level CTC model. We expect that the joint
training with the character-level model alleviates the problem of
data sparseness in less frequent words and improves the generality
of the model. Moreover, using a CTC loss in this auxiliary task will
enforce the monotonic constraint during training

Fig. 1 illustrates the overall architecture of our proposed frame-
work. In the encoder step, the entire model uses the shared net-
work. Then, there are two branches in the decoding step. One is the
word-level attention-based decoder with the number of output nodes
equal to the vocabulary size. The other branch corresponds to the
character-level model that functions as an auxiliary task and propa-
gates a CTC loss. The objective function for the MTL is defined as
a weighted sum of the losses propagated from both branches.

4.2. Resolving OOV words

Another serious drawback of the acoustic-to-word model is that it
cannot decode an OOV word. As a remedy for this problem, we can
also turn to the character-level model.

When an <UNK> symbol, which models OOV words, is pre-
dicted by the word-level model, the speech segment of the OOV
word can be roughly spotted by picking up the frame that has the
largest value in the attention vector. Meanwhile, segmentation of the
CTC output can be identified. In the character-level model, we have

Fig. 2. An example of resolving an OOV word. When the word-level
model outputs UNK, the time frame of the maximum value in the
attention vector is identified. In the character-level model, the cor-
responding sequence of the characters between the word boundaries
(wb) is extracted for output.

a special character for denoting word boundaries (<wb>). Thus,
we can align the segment of the <UNK> model with the sequence
between the two word boundary symbols, and output the correspond-
ing character sequences. Fig. 2 illustrates an example of resolving
an OOV word by this procedure. The time frame of the maximum
value in the attention vector when producing the <UNK> symbol
corresponds to the segment of E in the character-level model, thus
the sequence which includes E between <wb>, that is DEF, is re-
garded as the resolved sequence of the OOV word.

We expect that this mechanism decodes some OOV words and
contributes to reduced WER. Even if only a part of an OOV word is
recovered, the output would be more informative for users than an
<UNK> symbol.

5. EXPERIMENTAL EVALUATIONS

5.1. Data and task

We evaluated our methods through three speech recognition tasks
using two standard Japanese corpora: the Corpus of Spontaneous
Japanese (CSJ) [18] and Japanese Newspaper Article Sentences
(JNAS) [19]. CSJ includes two distinct sub-corpora, namely, CSJ-
APS and CSJ-SPS. CSJ-APS consists of academic public speeches
on several topics such as science, engineering, humanities and so-
cial science. CSJ-SPS consists of simulated public speeches on
three themes. JNAS is a Japanese read speech corpus of newspaper
articles. In Japanese, different character sets, namely, Hiragana,
Katakana, Kanji, and Roman alphabets are used in a mixed manner.
Therefore, there are many more characters in Japanese than, for ex-
ample, graphemes in English. Table 1 shows the number of distinct
words and characters used for the models of each corpus.

The corpora we used for training models have their own official
test sets. CSJ-TESTSET1 for CSJ-APS consists of 10 academic lec-
tures by 10 male speakers. CSJ-TESTSET3 for CSJ-SPS consists of
10 simulated speeches by 5 male and 5 female speakers. The test set
of JNAS consists of 200 sentences spoken by 23 male and female
speakers. The OOV rates of CSJ-TESTSET1, CSJ-TESTSET3, and
the JNAS test set are 1.36%, 1.48% and 2.20%, respectively.

5.2. System configuration

A 120-dimensional feature vector of 40-channel log Mel-scale filter-
bank (lmfb) outputs and their delta and acceleration coefficients are
used as acoustic features. Non-overlapping frame stacking [5] was
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Table 1. The number of distinct words and characters in each train-
ing set. The word vocabulary includes words which appear more
than three times. Others are treated as OOV words (UNK). The word
vocabulary also includes three special symbols of pause, start of sen-
tence (sos), and end of sentence (eos). In the character vocabulary,
UNK is not included but word boundary (wb) is added.

CSJ-APS CSJ-SPS JNAS
# words 19146 24826 10612
# characters 2854 3039 2315

Table 2. ASR performance (WER and real-time factor) of CSJ-APS
testset (224 hours). (·) means the model for an auxiliary task.

Model WER(%) RTF
DNN-HMM + largeLM 13.62 0.925
phone CTC + largeLM 14.15 0.581
word CTC 16.97 0.010
word attention 14.67 0.035
word attention (character CTC) 13.84 0.035
+ resolving unknown words 13.65 0.035

applied to these features, in which we stack and skip three frames to
make a new super-frame.

The acoustic encoder in the attention-based model consists of
three-layers of bidirectional LSTMs with 320 cells. The dropout
[20] rate was 0.2 for training each BiLSTM layer. The attention-
based word decoder consists of one-layer LSTM with 320 cells, a
hidden layer with 320 tanh nodes, and a softmax output layer for
word entries. The weight of the word-level model was set to be 0.8
and that for the character-level CTC was 0.2.

We used the Adam method with a standard setting described in
[21] for optimizing networks. We also used gradient clipping with
a threshold of 5.0. The minibatch size was set to be 30 through
all experiments, except for a preliminary experiment for comparing
different MTL strategies (Table 3). All network parameters were
initialized with random values drawn from a uniform distribution
with a range (-0.1, 0.1). Since providing long input sequences can
slow convergence at the beginning of the training, the input data were
sorted by the length of frames before creating minibatches. We used
the Chainer toolkit [22] to train the networks. In decoding with the
word-level attention model, we used a simple beam search with the
beam width of 4.

We also built a DNN-HMM hybrid system and a phone-CTC
system using CSJ-APS as baselines. The DNN-HMM system has
seven hidden layers with 2k sigmoidal nodes and a softmax output
layer with 5k nodes. It was trained using a sequence discriminative
criterion. The phone CTC system has three layers of bidirectional
LSTMs and a softmax output layer. In decoding with these baseline
systems, we used a large language model trained using transcription
of both of CSJ-APS and CSJ-SPS, utilizing their advantage that they
can use external large language models. For decoding with the hy-
brid DNN-HMM and the phone CTC, we used the Julius decoder
and the EESEN WFST decoder, respectively [12].

5.3. Results

Table 2 shows the ASR performance in WER as well as the real-
time factor (RTF) for CSJ-TESTSET1. All models were trained
using CSJ-APS. We can see that the acoustic-to-word model com-

Table 3. Comparison of auxiliary models for MTL on CSJ-APS. In
this experiment, minibatch = 10. Acoustic-to-word attention model
is used. ”—-” row means acoustic-to-word attention model only.

Model for auxiliary task WER(%)
—- 17.25
character CTC (Proposed) 16.11
character attention 17.55
word CTC 17.03

Table 4. ASR performance on different corpora (WER)

CSJ-SPS CSJ-APS JNAS
Training data amount 251hrs 224hrs 85hrs
DNN-HMM+LM 12.80 13.62 7.18
word attention 12.23 14.67 23.99
word attention (character CTC) 12.13 13.84 19.36
+ resolving unknown word 11.95 13.65 19.07

pletes decoding in significantly shorter time than the baselines. The
word attention model outperformed the CTC-based word model by
2.3 points in WER. This confirms that the attention-based model is
advantageous because it can learn a word-level language model. The
proposed MTL method yielded a further improvement of 0.83 points.

Although we confirmed that MTL using an auxiliary task of a
character-level CTC loss is effective in Table 2, we also compared
other auxiliary tasks. The results obtained with the word-level atten-
tion model combined with character-level attention model or word-
level CTC model are shown in Table 3. The word CTC auxiliary
task yielded a slight improvement of 0.22 points, but the character
attention models did not improve the performance.

The OOV resolution method described in Section 4.2 was also
performed. It reduced WER by 0.19 points, achieving a comparable
performance to the baseline DNN-HMM system with more than 25-
times faster decoding speed.

Table 4 compares the ASR performance for different corpora.
It is observed that the performance of the word-level model is bet-
ter when the amount of the training data is larger. The word atten-
tion model yielded even better performance for the CSJ-SPS test set
than the DNN-HMM. On the other hand, in the JNAS test set, the
word-level model showed only poor performance compared with the
baseline DNN-HMM, showing that the word-level model needs a
considerable amount of data. Another interesting point is that MTL
is more effective when the training data is small or the task is dif-
ficult. We also confirmed that the OOV resolution method yielded
small but consistent improvements for all test sets.

6. CONCLUSIONS

We have proposed joint training of a word-level model with a
character-level model to solve the sparseness of training data, par-
ticularly for less frequent words. We first showed that the acoustic-
to-word attention-based model outperformed CTC. The proposed
method achieved comparable or even better accuracy than the DNN-
HMM system with a significantly faster speed on two tasks. We also
demonstrated that decoding unknown words using the character-
level model is also effective for further improving the accuracy.
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[5] Haşim Sak, Andrew Senior, Kanishka Rao, and Françoise
Beaufays, “Fast and accurate recurrent neural network
acoustic models for speech recognition,” arXiv preprint
arXiv:1507.06947, 2015.
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