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ABSTRACT
There has recently been significant interest in hard attention models
for tasks such as object recognition, visual captioning and speech
recognition. Hard attention offers benefits over soft attention such
as decreased computational cost, but training hard attention models
can be difficult because of the discrete latent variables they introduce.
Previous work used REINFORCE to approach these issues, however,
it suffers from high-variance gradient estimates, resulting in slow
convergence. In this paper, we tackle the problem of learning hard
attention for a sequential task using variational inference methods,
specifically the recently introduced Variational Inference for Monte
Carlo Objectives (VIMCO) and Neural Variational Inference (NVIL).
Furthermore, we propose a novel baseline that adapts VIMCO to
this setting. We demonstrate our method on a phoneme recognition
task in clean and noisy environments and show that our method
outperforms REINFORCE, with the difference being greater for a
more complicated task.

Index Terms— Variational inference, online, sequence-to-
sequence, end-to-end, LAS

1. INTRODUCTION

Attention models have gained widespread traction from their suc-
cessful use in tasks such as object recognition, machine translation,
speech recognition where they are used to integrate information from
different parts of the input before producing outputs. Soft attention
does this by weighting and combining all input elements into a context
vector while hard attention selects specific inputs and discards others,
leading to computational gains and greater interpretability. While soft
attention models are differentiable end-to-end and thus straightfor-
ward to train, hard attention models introduce discrete latent variables
that often require reinforcement learning style approaches.

Classic reinforcement learning methods such as REINFORCE
[1] and Q-learning [2] have been used to train hard attention mod-
els, but these methods can provide high-variance gradient estimates,
making training slow and providing inferior solutions. An alternative
to reinforcement learning is variational inference, which trains a sec-
ond model, called the approximate posterior, to be close to the true
posterior over the latent variables. The approximate posterior uses
information about both the input and its labels to produce settings of
the latent variables used to train the original model. This can provide
lower-variance gradient estimates and better solutions.

In this paper, we leverage recent developments in variational in-
ference such as NVIL [3] and VIMCO [4] to fit hard attention models
in a sequential setting. We specialize these methods to sequences and
develop a model for the approximate posterior. In response to issues
applying variational inference techniques to long sequences, we de-
velop new variance control methods. Finally, we show experimentally
∗Equal contribution.

x1 x2 x2

h1 h2 h3

b1 b2 b3

y1

(a) Model, p(y, b|x)

h1 h2 h3

b1 b2 b3

y1 y1 y2

h′1 h′2 h′3

x1 x2 x3

(b) Approximate Posterior, q(b|x, y)

Fig. 1. A diagram of our models. bs denote the Bernoulli emission
decision variables, xs are inputs, ys are targets, and hs and h′s are
the hidden states of the recurrent neural networks (RNNs) that param-
eterize the conditional distributions of the models. Square nodes are
deterministic, round nodes are stochastic. A shaded bi indicates that
the model chose to consume an input and not emit an output while an
unshaded bi mean that the model chose to produce an output and not
consume an input. For example, in (a) note that b1 is shaded, so the
model did not produce an output on timestep 1 and instead consumes
the input x2 on the next timestep. b2 is unshaded, so on the second
timestep the model produced output y1.

that our approach improves performance and substantially reduces
training time for speech recognition on the TIMIT dataset as well as
a noisy, multi-speaker version of TIMIT that we call Multi-TIMIT.

2. METHODS

2.1. Model

In this paper, we use the online sequence-to-sequence model de-
scribed in [5] to demonstrate our methods. We model p(y, b|x)
where y = y1, . . . , yn is a sequence of observed target tokens and
x = x1, . . . , xm is a sequence of observed inputs. The Bernoulli
latent variables b = b1, . . . , bm+n define when the model outputs
tokens, i.e. bt = 1 implies the model emitted a token at timestep t,
and bt = 0 implies the model did not emit a token at timestep t. If
bt = 1, the model is forced to dwell on the same input at the next
time step, i.e. the observation fed in at timestep t is fed in again at
timestep t+1 when bt = 1. Let n be the number of target tokens, m
the number of inputs, and T = m+ n the number of steps the model
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is run for. Our model assumes p(y, b|x) factorizes as

p(y, b|x) =
T∏

t=1

p(yO(t)|b1:t, x1:I(t), y1:O(t−1))
bt×

p(bt|b1:t−1, x1:I(t), y1:O(t−1))

(1)

where O(t) =
∑t

i=1 bi is the position in the output at time t and
I(t) = 1 +

∑t−1
i=1(1− bi) is the input position at time t. Intuitively,

this expression is the product over time of the probability assigned to
the current ground truth given that the model emitted, multiplied by
the probability that the model emitted. When bt = 0 the model did
not emit at time t, so there is no probability assigned to the ground
truth on that timestep. For brevity, we will use yt to implicitly mean
yO(t) (i.e., the target at step t). Similarly, we will refer to xI(t) as xt

and similarly for ranges over time for these variables.

2.2. Learning

To fit the model (1) with maximum likelihood we are concerned with
maximizing the probability of the observed variables y. However, (1)
is written in terms of the unobserved latents, b, so we must marginal-
ize over them. The marginal likelihood is intractable, so the authors
of [5] maximize a lower bound

Eb

[ T∑
t=1

bt log p(yt|st, bt)
]
=Eb

[
log

T∏
t=1

p(yt|st, bt)bt
]

≤ log p(y|x),

where st = {b1:t−1, x1:t, y1:t−1} is the state at time t and the expec-
tations are over p(bt|st). Maximizing this lower bound will hopefully
increase the likelihood of the observed data. Differentiating the lower
bound with respect to the model parameters gives

Eb

[
∇

T∑
t=1

bt log p(yt|st, bt)
]
+

T∑
t=1

Eb

[
Rt∇ log p(bt|st)

]
, (2)

where Rt =
∑T

t′≥t log p(yt′ |st′ , bt′) is known as the return at
timestep t and is the log probability the model assigns to observed
data for a given series of emission decisions. To reduce variance
in the Monte Carlo estimate of the gradient, [5] subtracts a learned
baseline c(b1:t−1, x1:T , y1:T ) from the return, which does not change
the expectation as long as it is independent of bt [1].

Performing stochastic gradient ascent with this gradient estima-
tor is the standard REINFORCE algorithm where the reward is the
log-likelihood. Unfortunately, this requires sampling bt from p(bt|st)
during training, which can lead to gradient estimates with high vari-
ance when settings of b that assign high likelihood to y are rare [4].
Variational inference is a family of techniques that use importance
sampling to instead sample b from a different model, called the ap-
proximate posterior or q, which approximates the true posterior over
b, p(b|x, y). The approximate posterior (see Figure 1b) factorizes as

q(b|x, y) =
T∏

t=1

q(bt|b1:t−1, x1:T , y1:T ). (3)

The approximate posterior has access to all past and future x and
y, as well as past b, and leverages this information to assign high
probability to b that produce large values of p(y|b, x). Intuitively, in
speech recognition, knowing the token the model must emit is helpful
in deciding when to emit.

Using q and an importance sampling identity we obtain a lower
bound on the log-likelihood

log p(y|x) = log Eb∼q

[
p(y, b|x)
q(b|x, y)

]
≥ Eb∼q

[
log

p(y, b|x)
q(b|x, y)

]
(4)

where we can simultaneously optimize q and the parameters of the
model to improve the lower bound. Optimizing this bound via stochas-
tic gradient ascent can be thought of as training p with maximum
likelihood to reproduce bs sampled from q. q is then updated with
REINFORCE-style gradients where the reward is the log-probability
p assigns to y given b, similar to (2), see [4] for details. Setting
q(b|x, y) =

∏
t p(bt|st) recovers the REINFORCE objective.

2.2.1. Multi-sample Objectives

Both the REINFORCE and the variational inference objectives admit
multi-sample versions that give tighter bounds on the log-likelihood
[6]. In particular, the multi-sample variational lower bound is

L = Eb(1:k)∼q

[
log

(
1

k

k∑
i=1

p(y, b(i)|x)
q(b(i)|x, y)

)]
(5)

where k is the number of samples and b(i) denotes the ith sample
of the latent variables. Setting q(b|x, y) =

∏
t p(bt|st) recovers the

multi-sample analogue to REINFORCE.
The gradient of (5) takes a similar form to (2), with one low-

variance term and one REINFORCE-style term with high variance,
for details see [4]. Similarly to the REINFORCE objective, we can
use a baseline c(b

(i)
1:t−1, x1:T , y1:T , b

(−i)
1:T ) to reduce the variance of

the gradient as long as it does not depend on b
(i)
t . Notably, the

baseline for trajectory i is allowed to depend on all timesteps of other
trajectories, i.e. b(−i)

1:T .

2.3. Variance Reduction

Training these models is challenging due to high variance gradient
estimates. We can reduce the variance of the estimators by using
information from multiple trajectories to construct baselines. In
particular, for REINFORCE, we can write the gradient update as

Eb(i)

[
T∑

t=1

(
Rt − c(s

(i)
t−1, {R

(j)
1:T }j 6=i)

)
∇ log p(b

(i)
t |s

(i)
t−1)

]
,

where c is a baseline for sample i that is a function of the ith trajec-
tory’s state up to time t − 1 as well as the returns produced by all
other trajectories. The goal is to pick a c that is a good estimate of
the return, and a straightforward choice is the average return from the
other samples

c =
1

k − 1

∑
j 6=i

R
(j)
t .

This ignores the fact that s(i)t 6= s
(j)
t , which can make this standard

baseline unusable. For example, in our setting different trajectories
may have emitted different numbers of tokens on a given timestep,
resulting in substantial differences in return between trajectories
that do not indicate the relative merit of those trajectories. Ideally,
we would average over multiple trajectories starting from s

(i)
t , but

this is computationally expensive. In [4] the authors propose the
following baseline which adds a residual term to address this. Let
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rt = log p(yt|st, bt) be the instantaneous reward at timestep t, then
the baseline at timestep t can be written

c =
1

k − 1

∑
j 6=i

R
(j)
t +

1

k − 1

∑
j 6=i

∑
t′<t

r
(j)

t′ − r
(i)

t′ . (6)

This baseline results in a learning signal that is the same across
all timesteps, potentially increasing variance as all decisions in a
trajectory are rewarded or punished together. We will call this the
leave-one-out (LOO) baseline because the baseline for a given sample
is constructed using an average of the return of the other k−1 samples.
Note that VIMCO optimizes the multisample variational lower bound
in equation (5) with the leave-one-out baseline, and NVIL optimizes
the single sample variational lower bound in equation (4) with a
baseline that can be learned or computed from averages [3].

As the return strongly depends on the number of emitted tokens
at time t, we can instead average the return of the other samples from
when they have emitted the same number of tokens as sample i. Let
e
(j)
t = mint′ O

(j)(t′) ≥ O(i)(t) be the first timestep when sample
j has emitted the same number of tokens as sample i at timestep t,
then

c =
1

k − 1

∑
j 6=i

T∑
t′>e

(j)
t−1

r
(j)

t′ . (7)

We call this new baseline the temporal leave-one-out baseline because
it takes into account the temporal reward structure of our setting.
This baseline can be combined with the parametric baseline, and is
applicable to both variational inference and REINFORCE objectives
in single- and multi-sample settings. We explore the performance of
these baselines empirically in the experiments section.

3. RELATED WORK

In this section we first highlight the relationship between our model
and other models for attention. Tang et. al. [7] proposed visual
attention within the context of generative models, while Mnih et. al.
[8] proposed using recurrent models of visual attention for discrim-
inative tasks. Subsequently, visual attention was used in an image
captioning model [9]. These forms of attention use discrete variables
for attention location. Recently, ‘soft-attention’ models were pro-
posed for neural machine translation and speech recognition [10, 11].
Unlike the earlier mentioned, hard-attention models, these models
pay attention to the entire input and compute features by blending
spatial features with an attention vector that is normalized over the
entire input. Our paper is most similar to the hard attention models
in that features at discrete locations are used to compute predictions.
However it is different from the above models in the training method:
While the hard attention models use REINFORCE for training, we
follow variational techniques. We are also different from the above
models in the specific application – attention in our models is over
temporal locations only, rather than visual and temporal locations. As
a result, we additionally propose the temporal leave-one-out baseline.

Because the attention model we use is hard-attention, the model
we use has parallels to prior work on online sequence-to-sequence
models [12, 5]. The neural transducer model [12] can use either hard
attention, or a combination of hard attention with local soft attention.
However it explicitly splits the input sequences into chunks, and it
is trained with an approximate maximum likelihood procedure that
is similar to a policy search. The model of Luo et. al. [5] is most
similar to our model. Both models use the same architecture; however,
while they use REINFORCE for training, we explore VIMCO for
training the attention model. We also propose the novel temporal

LOO baseline. A similar model with REINFORCE has also been
used for training an online translation model [13] and for training
Neural Turing Machines [14]. Our work would be equally valid for
these domains, which we leave for future work.

There has also been work using reweighted wake sleep to train
sequential models. In [15], Ba et. al. optimize a variational lower
bound with the prior instead of using a variational posterior. In
this work, we refer to this as REINFORCE to distinguish it from
variational inference with an inference network. In [16] the authors
revisit this topic, using reweighted wake sleep to train similar models.
Their algorithm makes use of an inference network but does not
optimize a variational lower bound. Instead they optimize separate
objectives for the model and the inference network that produce a
biased estimate of the gradient of the log marginal likelihood.

4. EXPERIMENTS

For our experiments we used the standard TIMIT phoneme recog-
nition task. The TIMIT dataset has 3696 training utterances, 400
validation utterances, and 182 test utterances. The audio waveforms
were processed into frames of log mel filterbank spectrograms ev-
ery 25ms with a stride of 10ms. Each frame had 40 mel frequency
channels and one energy channel; deltas and accelerations of the
features were append to each frame. As a result each frame was a 123
dimensional input. The targets for each utterance were the sequence
of phonemes. We used the 61 phoneme labels provided with TIMIT
for training and decoding. To compute the phone error rate (PER) we
collapsed the 61 phonemes to 39 as is standard on this task [17].

To model p we used a 2-layer LSTM with 256 units in each layer.
For the variational posterior q we first processed the inputs x1:T with
a 4-layer bidirectional LSTM and then fed the final layer’s hidden
state h′ into a 2-layer unidirectional LSTM along with the current
target yt and the previous emission decision bt−1. Each layer had
256 units. Note that in this case the approximate posterior does not
have access to yt+1:T at timestep t — in practice we found giving q
access to y far in the future did not improve performance.

We regularized the models with variational noise [18] and per-
formed a grid search over the values {0.075, 0.1, 0.15} for the stan-
dard deviation of the noise. We also used L2 regularization and grid
searched over the values {1 × 10−5, 1 × 10−4, 1 × 10−3} for the
weight of the regularization.

4.1. Multi-TIMIT

In addition to TIMIT, we also trained models on a noisy, multispeaker
dataset called Multi-TIMIT. In noisy settings an approximate poste-
rior with access to all x and y could disambiguate between possible
decodings of the same sequence better than the prior, which only has
access to x and past y.

To create Multi-TIMIT we mixed male and female voices from
TIMIT. Each utterance in the original TIMIT dataset was paired
with an utterance from the opposite gender. The waveform of both
utterances was first scaled to lie within the same range, and then
the scale of the second utterance was reduced to a smaller volume
before mixing the two utterances. We used three different scales for
the second utterance: 50%, 25%, and 10%. The new raw utterances
were processed in the same manner as the original TIMIT utterances,
resulting in a 123 dimensional input per frame. The transcript of
the speaker 1 was used as the ground truth transcript for this new
utterance. Multi-TIMIT has the same number of train, dev, and test
utterances as the original TIMIT, as well as the same target phonemes.
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Fig. 2. Test set phoneme error rate (PER) curves for models trained with REINFORCE, NVIL, and VIMCO on the TIMIT dataset (left), the
Multi-TIMIT 10% mixing proportion dataset (middle), and sample emission decisions for different methods on a TIMIT utterance (right).
We evaluated three independent trials for each method. VIMCO converged more quickly than REINFORCE on both datasets. Furthermore,
the performance gap between REINFORCE and VIMCO increases with Multi-TIMIT. We hypothesize that because Multi-TIMIT is a more
challenging task, having a strong approximation to the posterior lets the model draw attention to the correct positions. NVIL performed well on
TIMIT, but struggled with the more challenging Multi-TIMIT (note that only a single trial performs reasonably).

Table 1. PER results on TIMIT test set for various models. This
shows that REINFORCE performs comparably to the variational
inference methods and that our novel baselines improve training for
REINFORCE. It also shows that our baselines improve performance
over [5] which uses the same model with parametric baselines. Each
number is the average of three runs. Our methods are above the
horizontal line, while methods from the literature are listed below it.

Method PER
REINFORCE with leave-one-out (LOO) baseline 20.5
NVIL with LOO baseline 21.1
VIMCO with LOO baseline 20.0
REINFORCE with temporal LOO baseline 20.0
NVIL with temporal LOO baseline 21.4
VIMCO with temporal LOO baseline 20.0
Online Alignment RNN (stacked LSTM) [5] 21.5
Neural Transducer with unsupervised alignments [12] 20.8
Online Alignment RNN (grid LSTM) [5] 20.5
Monotonic Alignment Decoder [19] 20.4
Neural Transducer with supervised alignments [12] 19.8
Connectionist Temporal Classification [20] 19.6

We trained models with the same configuration described above
on the 3 different mixing scales, and also trained 2-layer unidirec-
tional LSTM models with Connectionist Temporal Classification for
comparison. The results are shown in Table 2.

5. RESULTS

Figure 2 shows training curves for different training methods. The
variational methods (VIMCO and NVIL) require many fewer training
steps compared to REINFORCE on both datasets. All methods used
the same batch size and number of samples, so training steps are
comparable. NVIL performs adequately on TIMIT, but struggles with
Multi-TIMIT. It can be seen that the gap between REINFORCE and
VIMCO increases on Multi-TIMIT (also see table 2).

The right panel of Figure 2 shows that REINFORCE attempts to
wait to emit outputs until more information has come in, compared
to VIMCO. This is presumably because it requires more information
during learning. VIMCO, on the other hand, leverages the variational
posterior which can access future y and find the optimal place to emit.

In our experiments the difference between the performance of
VIMCO and REINFORCE was larger for the more complicated task

Table 2. PER results on Multi-TIMIT for various algorithms. It
can be seen that for this task VIMCO outperforms REINFORCE,
and both VIMCO and REINFORCE outperforms RNN trained with
Connectionist Temporal Classification significantly. The benefit of
VIMCO increases as the second speaker’s volume increases.

Method Mixing Proportion
0.50 0.25 0.1

Connectionist Temporal Classification 43.8 33.3 27.3
RNN Transducer 48.9 32.2 25.7
REINFORCE with LOO baseline 42.9 32.5 25.9
NVIL with LOO baseline 70.1 71.8 55.2
VIMCO with LOO baseline 41.7 30.7 25.4
REINFORCE with temporal LOO baseline 43.5 31.6 25.6
NVIL with temporal LOO baseline 74.3 71.9 54.9
VIMCO with temporal LOO baseline 41.7 30.75 25.2

of Multi-TIMIT than for TIMIT. This can be explained by consider-
ing the samples that the models learn from. In the simpler problem
of single speaker TIMIT, Monte-Carlo samples generated by REIN-
FORCE have very high likelihood under p(b|x) – there are only a
small number of samples that explain the entire probability mass, and
these are sampled easily by a left to right ancestral pass (in time)
of the model. These are very similar to the samples generated by
the approximate posterior from VIMCO. As a result both methods
perform approximately the same. In the case of Multi-TIMIT, how-
ever, in the ancestral pass the probabilities for individual emissions
are much lower. Thus the likelihood is less ‘peaked’, and a large
diversity of samples is chosen, leading to higher variance and poor
learning. VIMCO, on the other hand does not face this problem
because it samples from the approximate posterior, which is close to
the true posterior and so very peaked around the ‘correct’ samples of
experience.

6. CONCLUSION

We demonstrated how VIMCO can be adapted to sequential hard
attention problems, and introduced a new variance-reducing baseline.
Our method outperforms other methods of training online sequence-
to-sequence models, and the improvements are greater for more
difficult problems such as noisy mixed speech. In the future we will
apply these techniques to other domains such as visual attention.
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