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ABSTRACT

The paper provides an analysis of automatic speech recogni-

tion systems (ASR) based on multilingual BLSTM, where we

used multi-task training with separate classification layer for

each language. The focus is on low resource languages, where

only a limited amount of transcribed speech is available. In

such scenario, we found it essential to train the ASR sys-

tems in a multilingual fashion and we report superior results

obtained with pre-trained multilingual BLSTM on this task.

The high resource languages are also taken into account and

we show the importance of language richness for multilingual

training. Next, we present the performance of this technique

as a function of amount of target language data. The impor-

tance of including context information into BLSTM multi-

lingual systems is also stressed, and we report increased re-

silience of large NNs to overtraining in case of multi-task

training.

Index Terms— Automatic speech recognition, Multilin-

gual neural networks, Bidirectional Long Short Term Mem-

ory

1. INTRODUCTION AND PRIOR WORK

Quick delivery of an automatic speech recognition (ASR) sys-

tem for a new language is one of the challenges in the commu-

nity. Such scenarios call not only for automated construction

of systems, that have been carefully designed and crafted “by

hand”, but also for effective use of available resources. With-

out any question, the data collection and annotation are the

most time- and money-consuming processes.

The recently finished IARPA Babel program focused on

fast development of ASR systems, while the amount of per-

language data was decreasing from year to year. The data

from 24 low-resource languages were collected, which led to

numerous multilingual experiments.

For humans, borrowing the information from other sources

when learning a new language is very natural. We all share
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the same vocal tract architecture and phonetic systems of lan-

guages overlap, therefore automatic systems should be able

to have the universal and language-independent low-level

components (feature extraction and partially also acoustic

models), that would be built with various sources of data. In

the past, we have verified that the multilingual pre-training

is an important technique for feature extraction, especially if

limited amount of training data is available [1, 2], similarly

to [3, 4]. We have also performed an analysis of combin-

ing semi-supervised and multi-lingual training of NN-based

bottleneck feature extractors [5]. The hybrid Deep Neural

Networks-Hidden Markov Models (DNN-HMM) systems

benefit from the multi-lingual training too [6]. Recently

in [7], we extended this idea to Bi-directional Long-Short

Term Memory Recurrent Neural Networks (BLSTM-RNN)

acoustics models and show significant effect of the multilin-

gual pre-training for low resource languages.

The amount of training data over the languages in the

Babel project is more or less consistent (50-80h) and lim-

ited. Therefore, more detailed analysis of multilingual tech-

niques is not possible. In this paper, we added also English

Switchboard and Fisher corpora to investigate BLSTM acous-

tic models for larger amounts of training data.

2. DATA

The IARPA Babel program data simulate a situation, in which

the data for a new language are collected in a limited time.

The data consists mainly of conversational telephone speech

(CTS) but some scripted recordings and far field recordings

are present too. During the 4-year project, datasets of 25 lan-

guages were created: Year 1: Cantonese (CA), Pashto (PA),

Turkish (TU), Tagalog (TA), Vietnamese(VI). Year 2: As-

samese (AS), Bengali (BE), Haitian Creole (HA), Lao (LA),

Zulu (ZU), Tamil (Tam). Year 3: Kurdish (KU), Cebuano

(CE), Kazakh (KA), Telugu (TE), Lithuanian (LI), TokPisin

(TP), Swahili (SW). Year 4: Pashto progress set (about 40h

subset of Year 1) (PA2), Javanese (JA), Igbo (IG), Mongo-

lian (MO), Dholuo (DH), Guarani (GU), Amharic (AM),

Georgian (not used in this work) (GE). Non-Babel - English

used in this work includes: Switchboard-1 Release 2 (SWB),

Fisher English Training Speech Part 1+2 (FSH)
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Y1 Langs. CA PA TU TA VI

Hours 65 65 57 44 53

Y2 Langs. AS BE HA LA ZU Tam

Hours 47 54 55 57 58 56

Y3 Langs. KU CE KA TE LI TP SW

Hours 37 38 40 38 41 26 34

Y4 Langs. PA2 JA IG MO DH GU AM

Hours 32 40 39 39 38 39 39

Non-Babel SWB FSH

Hours 270 1700

Table 1. Amounts of data used for the training.

The amounts of data can be found in Table 1. Note, that

the data sizes are summarized after trimming the silence to

150 ms on the edges of speech segments, according to a

forced alignment. More details about Year 1–3 languages can

be found in [2].

For Babel languages, we limited the language model

training corpus to the transcriptions of the training audio we

received from the Babel program. Pronunciation dictionaries

were not provided, so we relied on graphemic lexicons. For

English, a 3-gram language model based on FSH+SWB tran-

scription was used. The pronunciation dictionary was based

on CMU dictionary [8].

Several data-sets based on packs from Table 1 were gen-

erated for the multi-lingual acoustic model training. We sim-

ulated a real situation with the data “growing” over time (see

section 4.4). The experiments were evaluated with Javanese

(JA), Pashto (PA) and Amharic (AM) from the 4th year of

the program. In addition, to simulate varying sizes of target

language training data, we experimented also with English

(SWB), where the training set was reduced to various subsets

(10h, 50h, 100h, 150h, 200h, Full). The hub5 eval 2000 set

was used for testing. Note that, unlike many other sites who

report results only on SWB subset of hub5 eval 2000 set, we

report results on the whole set in order to prevent overopti-

mistic results caused by the significant overlap of speakers in

training set and the SWB subset.

3. SYSTEM DESCRIPTION

Our systems were built with several toolkits: We used

STK/HTK [9] toolkit1 Kaldi [10] for maximum likelihood

(ML) Gaussian mixture model (GMM) training.Finally, we

trained BLSTM networks using CNTK [11].

For sake of simplicity, all the results in this work are com-

ing from cross-entropy trained systems with no further use of

sequence discriminative criteria, (for example sMBR).

1STK is BUT’s variant of HTK: http://speech.fit.vutbr.cz/

software/hmm-toolkit-stk

Features Javanese Amharic Pashto

PLP 66.4 56.2 61.1

MultRDT 55.9 46.2 51.2

Table 2. %WER of GMM Babel systems used as the align-

ment system.

SWB training data size h

Features 10 50 100 150 200 Full

MFCC 39.6 32.7 31.4 30.4 29.8 29.4

MultRDT 32.7 27.5 26.0 25.4 24.9 24.4

Table 3. %WER of GMM SWB systems used as the align-

ment system.

3.1. GMM system

First, GMM based acoustic models are trained to produce

phoneme alignments as the labels for the following NN train-

ing. These models are based on cross-word tied-states trained

from scratch using standard ML algorithm. The baseline

GMM systems had approximately 4000 cross-word triphone

tied states for Babel and 9100 for full SWB. They were

trained on multilingual Region Dependent Transform fea-

tures trained on 17 Babel languages (Y1-3) as the alignments

were found to lead to better NN performance over alignments

coming from PLP/MFCC based systems [12] 2. The initial

GMM results can be found in Table 2 for Babel languages

and in Table 3 for various subsets of SWB.

3.2. BLSTM systems

The BLSTM acoustic-models were trained with last layer

producing posterior probabilities of tied-states for HMM

models. The latency-controlled BLSTM architecture [13]

contains 3 bi-directional layers, for each direction there are

512 memory units and 300 dimensional projection layer.The

training is done with truncated back-propagation through

time (BPTT) algorithm [14]. Each update is based on

Tbptt = 20 time-steps of recurrent forward-propagations and

back-propagations. For detailed description of the procedure

used in our training see [13]

3.3. Feature extraction

The BLSTM NN input is fed with filter bank based features. It

contains of 24 log-Mel-filter-bank features concatenated with

different pitch features: “BUT F0” has 2 coefficients (F0 and

probability of voicing), “snack F0” is a single F0 estimate and

“Kaldi F0” has 3 coefficients (F0 normalized with a sliding

window, probability of voicing and F0 delta). Fundamental

frequency variation (FFV) produces a 7 dimensional vector.

The whole feature vector has 24+2+1+3+7=37 coefficients

2The scripts for MultRDT features generation can be found in http:

//speech.fit.vutbr.cz/software
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Features Mult-NN Javanese Amharic Pashto

11FBANK F0 None 54.4 44.0 50.7

11FBANK F0 24L 49.2 39.8 46.1

FBANK F0 None 54.0 44.0 49.0

FBANK F0 24L 52.1 42.2 47.7

Table 4. Comparison of %WER with various initialization

and feature extraction.

(see [15] for details on pitch features). These features will

be called “FBANK F0”.

After a conversation-side mean subtraction, we apply a

Hamming window and Discrete cosine transform to the fea-

ture trajectories spanning 11 frames. We retain 0th to 5th

DCT coefficients for each of the original 37 features result-

ing in 37×6=222 coefficients. These features will be called

“11FBANK F0”.

4. MULTI-LINGUAL EXPERIMENTS

4.1. Multilingual architecture

All multilingual models in this work were trained with a

‘block-softmax’ output layer, which consists of per-language

softmaxes [16]. The training targets were the context-

independent phoneme states, otherwise the size of the final

layer would be excessively large.

The NNs were trained with standard cross-entropy ob-

jective function and Stochastic Gradient Descent (SGD) ap-

proach. Whenever objective degraded on cross-validation

data, the learning rate was halved and the previous (so far

best performing model) was loaded.

The procedure of porting multilingual models into target

language can be described in the following steps:

1. The final multilingual layer (context-independent

phoneme states for all languages) is stripped and re-

placed with a layer specific to target-language (tied-

state triphones) with random initialization.

2. This new layer is trained for 8 epochs with a standard

learning rate, while the rest of the NN is fixed.

3. Finally, the whole NN is fine-tuned with 10 epochs, the

initial value of learning-rate schedule is set to 0.5 of the

original value.

4.2. Analysis of feature extraction

Here, we were interested in optimal feature extraction for

Multilingual and Monolingual BLSTM architectures. In our

recent work [7], we have shown significant gain from using

11FBANK F0 over bottle-neck features in BLSTM systems.

As BLSTM can naturally incorporate context information,

any feature stacking might not be necessary, so we experi-

mented with FBANK F0 features as well.

17L Mult.NN 24L Mult.NN

n. epoch Javanese Amharic Javanese Amharic

5 50.8 41.2 50.6 41.0

10 50.4 40.6 49.9 40.2

15 50.1 40.3 49.2 39.8

20 50.5 40.4 49.2 40.3

25 50.5 40.5 48.9 39.5

30 50.9 40.6 - -

Table 5. %WER obtained with fine-tuned NNs, which were

pre-trained using different number of training epoch.

According to Table 4, the plain FBANK F0 features are

the most suitable in monolingual systems, so the models can

naturally learn context information. But advantage of mul-

tilingual pre-training is partly lost with NN trained on this

features (comparing to system pre-trained on 11FBANK F0

features). This is very interesting outcome, it shows that

context information is advantageous for multilingual sys-

tems. Therefore, 11FBANK F0 features were used for all

multilingual systems and FBANK F0 were used for plain

monolingual baseline systems.

4.3. Analysis of number of training epochs

The final multilingual NN is used for the pre-training of a final

language specific system, therefore training into “ultimate”

minima of the objective function could not be optimal. The

multilingual NN has to be able to change its parameters to

different languages, therefore early stopping should be taken

into account.

For this experiments, the Y1-3 (17L) and Y1-4 (24L) lan-

guages were chosen. The first language set simulates adapta-

tion of a multilingual NN to an unknown new language and

the second one is showing the case where the target language

is contained in multilingual training data.

The first and second columns of Table 5 present signif-

icant drop of accuracy when NN is well trained on multilin-

gual data. The first halving of learning rate during the training

process was observed on 20th epoch for Y1-3 NN and on 19th

for Y1-4 NN. Therefore the final multilingual NN should be

taken before this point.Well trained multilingual NN is suit-

able only in cases where target language is part of multilin-

gual training set, see third and fourth column.

4.4. Multilingual training data

Next, the amount of multilingual training data was investi-

gated. Table 6 presents positive effect of adding more train-

ing data into multilingual training, which is consistent with

our previous work on feature extraction [2, 7].

In addition, we are presenting the effect of adding rich re-

source English data sets (last raw and column of the table). It

shows that having 11 small resource languages is giving better

performance than a lot of training data from single language
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Languages Javanese Amharic Pashto SWB

0 (monoling) 54.0 44.0 48.7 18.1

5 52.2 42.1 46.8 17.5

11 50.1 40.6 46.2 17.4

17 50.9 40.6 46.2 17.5

24 49.2 39.6 46.0 17.1

Fsh 51.5 41.4 47.1 16.5

Table 6. Comparison of %WER for BLSTM systems with

various multilingual initialization.

Data size [h] Monoling. Multiling. (24L)

10 35.5 26.0 (-9.5)

50 24.8 21.2 (-3.6)

100 22.4 19.6 (-2.8)

150 20.3 18.9 (-1.4)

200 18.9 17.9 (-1.0)

All 18.1 17.1 (-1.0)

Table 7. Comparison of SWB %WER on various data size

and type of training.

(compare rows “11” and “Fsh”). The last column (SWB),

shows that improvement from multilingual pre-training is no-

ticeable also on significantly bigger corpus than Babel data.

Obviously, the NN pre-trained on huge amounts of target data

(last column and raw) is giving the best results, but it is not a

sensible scenario and the NN could be simply trained on the

combined pre-training and fine-tuning data (i.e. Fisher and

SWB).

4.5. Multilingual pre-training on SWB

Next, we were interested in the improvement brought by

multilingual pre-training as function of the size of target lan-

guage training data. Table 7 shows huge improvement for

low-amount of training data (10h). After 100h, the gain is

starting to saturate. Interestingly, the improvement never

completely disappears and even for full SWB, it is still 1%

WER absolute. Therefore, multilingual pre-training can play

significant role even for rich-resource task.

4.6. Large NNs

Another possible improvement brought by multilingual train-

ing is a possibility to pre-train larger NNs that it would be

possible on small target language data. We were experiment-

ing with increasing the amount of layers for various SWB data

sizes. Surprisingly, monolingual experiments in Table 8 show

that 5 layers are better than 3 layers even for 10h of training

data. When more than 100 hours of training data is used, 6

layers are giving the best performance.

Similarly to SWB, 5 to 6 layers are more suitable even

for Babel languages, see Table 9. Therefore, we decided to

Data Size [h] 3L 4L 5L 6L 7L

10 35.5 33.8 33.0 33.4 35.3

50 24.8 23.9 23.1 24.8 23.6

100 22.4 20.8 21.5 20.4 21.4

150 20.3 20.1 20.4 19.5 19.4

200 18.9 18.6 18.1 18.3 18.6

All 18.1 17.1 16.8 16.8 17.0

Table 8. Comparison of SWB %WER on various data size

and number of layers.

n.Layers Javanese Amharic Pashto

3L 54.0 44.0 49.0?

4L 53.5 42.7 48.3

5L 53.2 42.4 48.2

6L 52.6 42.2 49.2

7L 53.2 43.6 49.5

Table 9. %WER for various number of layers on Babel data.

retrain multilingual NN on 24languages with 6 layers as well.

The results are in Table 10.

5. CONCLUSION

This paper analyzes multi-lingual training of BLSTM sys-

tems. We have shown clear advantage of multi-lingual train-

ing of acoustic models in low-resource scenarios. Small but

consistent gains are also present on rich resources scenario.

With multilingual pre-training, we have found essential

to include context information into multilingual systems even

for BLSTM which can naturally learn it.

The optimum size of acoustic model NN was also inves-

tigated and we found that even low resource systems (10h)

can be trained with 5 layers. The rich resource language can

advantageously exploit a more complex system, therefore we

are presenting additional gain from building multilingual sys-

tem on 6 layers.

System Javanese Amharic Pashto

Mono 6L 52.6 42.2 49.2

Multi 3L 49.2 39.8 46.1

Multi 6L 24Lang 49.0 39.3 45.8

Table 10. %WER for multilingual 6 Layer Babel system.
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