
A CONVERSATIONAL NEURAL LANGUAGE MODEL FOR SPEECH RECOGNITION IN
DIGITAL ASSISTANTS

Eunjoon Cho, Shankar Kumar

Google Inc., USA
{ejcho,shankarkumar}@google.com

ABSTRACT

Speech recognition in digital assistants such as Google As-
sistant can potentially benefit from the use of conversational
context consisting of user queries and responses from the
agent. We explore the use of recurrent, Long Short-Term
Memory (LSTM), neural language models (LMs) to model
the conversations in a digital assistant. Our proposed meth-
ods effectively capture the context of previous utterances in
a conversation without modifying the underlying LSTM ar-
chitecture. We demonstrate a 4% relative improvement in
recognition performance on Google Assistant queries when
using the LSTM LMs to rescore recognition lattices.

Index Terms— speech recognition, recurrent language
model, digital assistants, conversation

1. INTRODUCTION

Automatic speech recognition of conversations has a wide
range of applications such as telephony, call-center and meet-
ing transcriptions as well as digital assistants. Unlike other
spoken corpora such as news broadcasts, voice-search queries
or short message services, conversations are typically cen-
tered around common themes or topics, which persist through
the duration of the conversation. Thus, a conversation-aware
language model can potentially make use of such long range
context to resolve ambiguities in speech recognition.

Prior work has explored the modeling of long term con-
textual information using language models (LMs) in the con-
text of automatic speech recognition [1, 2], machine transla-
tion [3] and spoken language understanding [4, 5, 6].

Similar to prior work, we use recurrent, Long Short Term
Memory (LSTM), neural language models to capture the long
term context within a spoken conversation. A common ap-
proach in these contextual systems is to model the speaker
turn or context as an additional input to the network layers [7,
5, 8] or the LSTM cells [9, 10].

As an alternative to modifying the network architecture
to capture dependencies specific to conversations, we explore
multiple techniques to modify the input data for training a
standard LSTM language model on conversations. This has
the advantage of using an identical and reliable architecture

for generic ASR language models while still being able to
provide previous utterances as context for training the LM.

The human-machine dialog in a digital assistant has a
word distribution which is quite different from that seen in
normal human-human interactions. The user of the assistant
usually provides short command-like queries whereas the
assistant is likely to respond with a more verbose response
that may provide detailed information back to the user. We
experiment with strategies that take these assistant-specific
characteristics into account while training the LSTM LM.

In Section 2, we describe the architecture and model train-
ing for the LSTM LM. In Section 3, we present a variety of
approaches to train the LSTM LM by modifying the input text
consisting of the previous queries and assistant responses. We
describe our lattice rescoring setup in Section 4 and present
results of our experiments in Section 5 followed by a discus-
sion in Section 6.

2. LSTM LANGUAGE MODEL

A language model (LM) [11] assigns a probability to a se-
quence of words, wT

1 :

P (wT
1) =

T∏
i=1

P (wi|w1, w2, . . . , wi−1). (1)

While an N-gram LM uses the previous N − 1 words as con-
text, a recurrent neural network language model (RNNLM) [12]
can make use of the entire history of words thus far, while
assigning a probability to the next word. This makes RNN
LMs, and specifically the LSTM variants [13] effective in
tasks where long-term history is important, as is the case for
speech recognition of videos [14].

We use the LSTM LM architecture described in [15, 14]

5784978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

(Figure 1). Each LSTM cell is specified as:

(2)
it = σ(Wxixt +Wrirt−1 +Dwict−1 + bi)

ft = 1.0− it
ot = σ(Wxoxt +Wrort−1 +Dwoct−1 + bo)

ct = ct−1 � ft + it � tanh(Wxcxt +Wrcrt−1 + bc)

mt = tanh(ct)� ot
rt = Wrmmt

where xt = Ewt is a continuous representation of the word
wt obtained using the embedding matrix E. σ is the logistic
sigmoid function. it, ft and ot are the input, forget and the
output gates. The forget and input gates are coupled to limit
the range of the internal state of the cell. The tuple (ct, rt)
represents the internal cell states or the LSTM state. W , D
and b denote full weight matrices, diagonal weight matrices
and biases, respectively. � represents element-wise multi-
plication. The architecture uses peep-hole connections from
the internal cells (ct) to the gates to learn the precise timings
of the outputs [16, 17]. We use a recurrent projection layer
(rt) [18] that reduces the dimension of a big recurrent state
(mt), thus allowing the matrices to remain relatively small
while retaining a large memory capacity.

A speech recognition system for voice-search or a dig-
ital assistant typically uses a vocabulary of a few million
words [19]. With such a large vocabulary, the softmax layer
is computationally expensive for both training and testing. To
reduce the computation, our RNNLM models the top 100K
words from the training corpus. Any word not in this vocab-
ulary is mapped to an unknown token, which is considered a
word in the RNNLM vocabulary. To further reduce the com-
putation at training time, we employ a sampled softmax [15]
over 3% of the vocabulary, where the negative samples are
drawn from a log-uniform distribution after ensuring that
the words are sorted in decreasing order of their unigram
frequencies in the training data.

Softmax

W
2
’ W

3
’ W

4
’ W

5
’

W
1

W
2

W
3

W
4

Target Vocabulary

Recurrent Projection
LSTM Layer

Recurrent Projection
LSTM Layer

Word Embedding

Input Vocabulary

100K

512
2048

512
2048

1024

100K

Fig. 1. Architecture of the LSTM LM: State of the network
while predicting the final target word w5, is shown.

3. MODELING CONVERSATION

Our goal is to incorporate conversation context in the standard
LSTM LM. For training such a model, we create sentences
by concatenating previous queries either with or without the
responses generated from the agent. We experiment with the
following strategies for generating the input data.

3.1. Queries only

In this scheme, each user query e.g. What is the weather to-
day? is treated as a separate sentence, i.e. there is no conver-
sational context. This serves as the baseline for our experi-
ments.

3.2. Contextual Queries

We prepend each query with the previous two queries, col-
lected within an interval of 5 minutes. In this setup, we re-
quire that each training sentence consist of a total of three
queries. We separate each pair of queries using a turn bound-
ary marker, which is a token in the LSTM LM vocabulary.

3.3. Contextual Queries and Assistant responses

We augment the training data in 3.2 with assistant responses
e.g. It is cloudy and 70 degrees Fahrenheit. Each training sen-
tence consists of a sequence of three queries, and their corre-
sponding assistant responses, separated using turn boundary
markers. We experiment with four variants. In the first vari-
ant, we omit the turn boundary markers. For the second, we
do not require a maximum of three queries per sentence i.e.
if we extract fewer than 3 queries in the 5 minute window,
we also keep those queries in our training data. This strategy
makes it possible to include additional training data which
were discarded because they did not consist of three queries.
The next two variants are based on the hypothesis that for
modeling a query, the previous query history is more influ-
ential compared to the previous assistant response. Our third
variant derives the vocabulary from queries alone, while train-
ing on both queries and agent responses. In the fourth variant,
we vary the order by presenting the assistant responses first
followed by the queries.

4. LATTICE RESCORING

A speech recognizer selects the hypothesis with the highest
posterior probability given the acoustic waveform O:

Ŵ = argmax
W

P (W |O) = argmax
W

P (O|W)P (W), (3)

where P (O|W) and P (W) denote the probabilities assigned
by the acoustic and the language model, respectively. In this
work, we integrate the LSTM LM into the recognizer by first
generating recognition lattices using an acoustic model and an

5785

N-gram LM. The lattices are then rescored by the LSTM LM
using the push-forward algorithm [20, 14], where we keep the
single-best LSTM state at each lattice node. This strategy is
based on prior work [14] that has shown that keeping a larger
number of LSTM hypotheses at each lattice node gives a very
small improvement in recognition performance at the cost of
much higher computation. On each lattice arc, we interpolate
the log probabilities of the LSTM LM with that of the first
pass, n-gram LM, using a weight of 0.5:

logP (W) = 0.5logPLSTM LM(W) + 0.5logPn-gram(W) (4)

For rescoring the lattice corresponding to a given query,
we first present the LSTM LM with the word tokens in the
conversational context for the utterance. This context consists
of the previous queries and/or assistant responses depending
on the scheme used (Section 3). We then rescore the lattice
using the LSTM LM. By initializing the LSTM LM with the
tokens in the conversation, we expect the internal state of the
LSTM LM to capture the long-range context in the conversa-
tion.

5. EXPERIMENTS

We next report speech recognition results on an US English,
conversational assistant task. The underlying recognizer uses
a low frame rate neural acoustic model (AM) as described
in [21]. A 5-gram LM with Katz backoff, with a total of 100M
n-grams and 4M vocabulary, was trained on 180B sentences.
The initial word lattice was generated using this AM and LM,
and the lattices were rescored with our conversational LSTM
LM.

The conversational LSTM LMs were trained on
anonymized queries and responses for the Google Assistant.
Each data set was extracted and formatted differently accord-
ing to the specific model that was being trained. However, all
of them were extracted on the same date range such that the
results across models are comparable. Each sequence con-
sists of at most 3 query and response pairs that occur within
a 5 minute time frame. The data was approximately 200M
sequences in total, with 16.9B words for sequences with re-
sponses and 6.3B words for sequences with only previous
queries.

For training the LSTM LM, we used hyperparameters
from [15] and trained the model until convergence using an
AdaGrad optimizer [22] using a learning rate of 0.2 without
dropout [23]. We unrolled the RNNs for 20 steps, used a
batch size of 128, and clipped the gradients of the LSTM
weights so that their norm was bounded above by 1.0 [24].
The training used 32 GPU workers and asynchronous gradi-
ent updates. Training was performed using TensorFlow [25].

We measure the Word Error Rate (WER) on two test sets.
The data was sampled differently and collected from a dif-
ferent region compared to the training data used for training

our LSTM LMs. Testset A consists of 4,511 transcribed ut-
terances (16,081 words) sampled from the same Google As-
sistant traffic. This contains utterances that might or might
not have previous queries (and responses) within a 5 minute
window. Testset B is a subset of Testset A and has 3,774 tran-
scribed utterances (12,672 words). Each of the utterances in
Testset B has exactly 2 previous query and response pairs that
the model can pass on as context. Although each of the ut-
terances in the test set are transcribed, the preceding queries
that are input as context for any given utterance are not tran-
scribed. i.e., we rely on the ASR output for preceding queries
in order to simulate what would happen in production.

5.1. Using previous queries as context

Models Testset A Testset B
No context 11.9 12.5
Context 11.6 12.2

Table 1. Evaluation using previous queries as context

Table 1 reports WERs for the models that were trained
with and without previous queries as context. The model with
previous queries was trained on sequences that each had three
consecutive queries occurring within a 5 minute window. The
model trained with previous queries as context had gains over
the model that did not. A big portion of the gains were queries
from users engaged in a question answering feature of the
Google Assistant. Acoustically confusable words such as two
vs. too were commonly corrected with the contextual model.
This is mostly likely because of the fact that if the previous
queries were numbers, the contextual model would likely hy-
pothesize the current query to be a number as well.

5.2. Using Assistant responses as context

In this section, we explore the benefit of including the re-
sponses of the digital assistant as input to the model. Model
1 which includes responses in the context outperformed the
baseline model as shown in Table 2. The reason this helps is
similar to the reason for gains achieved in Section 5.1. The
additional context that the previous agent response provides
is helpful in avoiding mis-recognitions on the current user
query. For example, wins were achieved when the user said
no to answer a question asked by the agent. In this case, hav-
ing reference to the agent’s previous response would help rec-
ognize the query given the strong correlation between the two.
However, the majority of the questions are actually usually
said by the users. Words that were often correctly recognized
in the baseline model but not in Model 1 were question words
(e.g. what, who, etc.). These are common words that appear
mostly as part of a user query and less so in a response by
the agent. The fact that Model 1 was trained on both user

5786

Model # Model Details Testset A Testset B
Baseline Context (queries only) 11.6 12.2
Model 1 Context (queries + responses) 11.5 12.1
Model 2 Context (queries + responses) with vocabulary from queries 11.6 12.3
Model 3 Context (queries + responses) with priority on queries 11.4 12.1
Model 4 Context (queries + responses) without turn makers 11.5 12.2
Model 5 Context (queries + responses) with partial sequences 11.6 12.4

Table 2. Model variations for using assistant responses as context

queries and agent responses resulted in a distribution that was
different from our target, which is to predict on queries only.

Without directly modifying the model architecture, we ex-
plored two approaches of modifying the input to compensate
for this difference. The first approach, Model 2, was to re-
strict the vocabulary of the model with words that were from
the queries only. This was to constrain the model to only out-
put what was previously observed as a query and not words
unique to the responses. The second approach, Model 3, was
to reorder the sequence of previous queries and responses
such that all the assistant responses were presented at the be-
ginning of the sequence despite the chronological ordering.
For example, if the chronological order or queries (Qi) and
responses (Ri) were

Q1, R1, Q2, R2, Q3,

we would re-order the training sequence to be

R1, R2, Q1, Q2, Q3.

This was motivated by the fact that a lot of the responses were
long utterances. Although LSTM models have the ability to
memorize long sequences, given the fact that the sequences
including assistant responses had on average 3.2 times more
words, (with an average of 53 words per sequence) the re-
ordering was done to put a recency bias on words that were
most relevant to the task. Table 2 shows that with Model 3,
we were able to achieve a slight gain on top of Model 1.

We also explored two other approaches of modeling the
query and responses. Model 4 attempts to model the sequence
without the presence of turn markers, which are used to sep-
arate the consecutive queries and responses. We observe a
slight quality loss without these markers. Model 5 trains the
model on sequences that are not constrained to have 3 con-
secutive query, response pairs. Naturally, some queries to the
assistant are not part of a longer interaction, hence modeling
this would make sense. However, this didn’t necessarily help
Testset A which had all range of sequences, whereas it pre-
dictably hurt Testset B, which was limited to utterances that
had 2 previous query, response pairs. We believe this can
be partially explained by the fact that a mixture of sequence
lengths in the input breaks the regularity that is otherwise
present in a model that is consistently trained with sequences
of 3 query, response pairs.

6. DISCUSSION

In this paper, we explored strategies for training a standard
LSTM LM on conversational data from a digital assistant.
Rather than modifying the structure of the model, we kept
the model architecture fixed and experimented with alterna-
tive inputs for training the model. We obtained a 4% relative
in accuracy on a speech recognition task for Google Assistant.
This demonstrates that it is possible to obtain improvements
in speech recognition for conversational agents without using
architectures which are tailored to the problem. Our training
strategies investigate the asymmetric nature of turns in a dig-
ital assistant, where the user queries are short and the agent
responses are generally longer.

7. REFERENCES

[1] Songfang Huang and Steve Renals, “Modeling topic
and role information in meetings using the hierarchi-
cal dirichlet process,” in International Workshop on
Machine Learning for Multimodal Interaction. Springer,
2008, pp. 214–225.

[2] Holger Schwenk and Jean-Luc Gauvain, “Neural net-
work language models for conversational speech recog-
nition,” in Eighth International Conference on Spoken
Language Processing, 2004.

[3] Alan Ritter, Colin Cherry, and William B Dolan, “Data-
driven response generation in social media,” in Proceed-
ings of the conference on empirical methods in natu-
ral language processing. Association for Computational
Linguistics, 2011, pp. 583–593.

[4] Yi Luan, Shinji Watanabe, and Bret Harsham, “Effi-
cient learning for spoken language understanding tasks
with word embedding based pre-training.,” in INTER-
SPEECH, 2015, pp. 1398–1402.

[5] Alessandro Sordoni, Michel Galley, Michael Auli, Chris
Brockett, Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie,
Jianfeng Gao, and Bill Dolan, “A neural network ap-
proach to context-sensitive generation of conversational
responses,” arXiv preprint arXiv:1506.06714, 2015.

5787

[6] Orio Vinyals and Quoc V. Le, “A neural conversational
model,” in ICML, 2015.

[7] Yi Luan, Yangfeng Ji, and Mari Ostendorf, “Lstm
based conversation models,” arXiv preprint
arXiv:1603.09457, 2016.

[8] Bing Liu and Ian Lane, “Dialog context language mod-
eling with recurrent neural networks,” arXiv preprint
arXiv:1701.04056, 2017.

[9] Tomas Mikolov and Geoffrey Zweig, “Context depen-
dent recurrent neural network language model.,” SLT,
vol. 12, pp. 234–239, 2012.

[10] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-
Hao Su, David Vandyke, and Steve Young, “Seman-
tically conditioned lstm-based natural language gener-
ation for spoken dialogue systems,” arXiv preprint
arXiv:1508.01745, 2015.

[11] F. Jelinek, Statistical Methods for Speech Recognition,
The MIT Press, Cambridge, MA, USA, 1997.

[12] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur, “Recurrent neural net-
work based language model,” in INTERSPEECH, 2010.

[13] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[14] Shankar Kumar, Michael Nirschl, Daniel Holtmann-
Rice, Hank Liao, Ananda Theertha Suresh, and Felix
Yu, “Lattice rescoring strategies for long short term
memory language models in speech recognition,” in
ASRU, 2017.

[15] Rafal Josefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Wu Yonghui, “Exploring the limits of lan-
guage modeling,” arXiv preprint arXiv:1602.02410v2,
2016.

[16] Alex Graves, “Generating sequences with recurrent neu-
ral networks,” arXiv preprint arXiv:1308.0850, 2013.

[17] Gers A, Schraudolph Nicol N., and Jürgen Schmidhu-
ber, “Learning precise timing with LSTM recurrent net-
works,” Journal of Machine Learning Research, vol. 3,
pp. 115–143, 2003.

[18] Hasim Sak, Andrew W. Senior, and Françoise Beaufays,
“Long short-term memory recurrent neural network ar-
chitectures for large scale acoustic modeling,” in IN-
TERSPEECH, 2014.

[19] Babak Damavandi, Shankar Kumar, Noam Shazeer, and
Antoine Bruguier, “NN-grams: Unifying neural net-
work and n-gram language models for speech recogni-
tion,” in INTERSPEECH, 2016.

[20] Michael Auli, Michel Galley, Chris Quirk, and Geoffrey
Zweig, “Joint language and translation modeling with
recurrent neural networks,” in EMNLP, 2011.

[21] G. Pundak and T. N. Sainath, “Lower Frame Rate Neu-
ral Network Acoustic Models,” in Proc. Interspeech,
2016.

[22] John Duchi, Elad Hazan, and Yoram Singer, “Adaptive
subgradient methods for online learning and stochastic
optimization,” The Journal of Machine Learning Re-
search, vol. 12, pp. 2121–2159, 2011.

[23] Nitish Srivastava, Improving neural networks with
dropout, Ph.D. thesis, University of Toronto, 2013.

[24] Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio, “On the difficulty of training recurrent neural net-
works.,” in ICML, 2013, pp. 1310–1318.

[25] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eu-
gene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al., “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

5788

