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ABSTRACT

Transcription or sub-titling of open-domain videos is still a chal-
lenging domain for Automatic Speech Recognition (ASR) due to
the data’s challenging acoustics, variable signal processing and the
essentially unrestricted domain of the data. In previous work, we
have shown that the visual channel – specifically object and scene
features – can help to adapt the acoustic model (AM) and language
model (LM) of a recognizer, and we are now expanding this work
to end-to-end approaches. In the case of a Connectionist Tempo-
ral Classification (CTC)-based approach, we retain the separation
of AM and LM, while for a sequence-to-sequence (S2S) approach,
both information sources are adapted together, in a single model.
This paper also analyzes the behavior of CTC and S2S models on
noisy video data (How-To corpus), and compares it to results on the
clean Wall Street Journal (WSJ) corpus, providing insight into the
robustness of both approaches.

Index Terms— Audiovisual Speech Recognition, Connectionist
Temporal Classification, Sequence-to-Sequence Model, Adaptation

1. INTRODUCTION

Audio-visual speech recognition has been an active area of research
for a long time: humans use “lip-reading” to improve their robust-
ness against noise, and they control the balance between lip-reading
and hearing adaptively and transparently.

In this paper, we propose to use multi-modal video information
slightly differently, and adapt an end-to-end speech recognizer to the
visual semantic concepts extracted from a correlated visual scene
that accompanies some speech, for example in a “How-To” video.
If we see a person standing in a kitchen, holding sliced bread, it is
likely that the person is explaining how to make a sandwich, and the
acoustic conditions will be comparably clean. If a person is stand-
ing in front of a car, it is likely a review of that car, and happening
outdoors. Clearly, the language model will be affected as well.

Recognition thus involves two major steps:

1. For every utterance, extract a visual semantic feature “context
vector” from a single video frame using deep Convolutional
Neural Networks (CNNs) trained for object recognition and
scene labeling tasks.

2. Adapt or condition a recognizer to this utterance’s context.
In this work, we compare a CTC-based system and a S2S
system.

This paper builds on earlier work [1, 2] and presents first results
on multi-modal adaptation of CTC and S2S models. We present vari-
ous audio-visual adaptation strategies for the CTC model and present
our first results with S2S model adaptation. The ultimate goal of this
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work will be to view automatic speech recognition not primarily as
the speech-to-text task, but as a process which sub-titles multi-media
material removing repetitions, hesitations or corrections from spon-
taneous speech as required, much like “video captioning” [3]. We
show that multi-modal adaptation helps by 2% absolute improve-
ment in the token error rate.

While multi-modal adaptation improves recognition in such
noisy datasets, we see that there is need for deeper insight into the
CTC and S2S models. These models behave very differently with
clean, prepared datasets like WSJ than with spontaneous, noisy
speech. Ground truth references for the How-To data are less ac-
curate than for WSJ; we see that this influences model training.
We present insights into the differences in the output of these two
approaches as these issues have not been addressed in prior work
yet. Because of the novelty of the S2S approach, we also implement
a strong baseline on the WSJ dataset.

In the following sections, we first describe related work in 2,
data and feature extraction in 3, model descriptions in 4 and results
on multimodal adaptation in 5.1, differences in CTC and S2S in 5.2
and model differences while using WSJ and How-To in 5.3.

2. RELATED WORK

On consumer-generated content (like YouTube videos), Deep Neu-
ral Network (DNN) models exhibit Word Error Rates (WER) above
40% [4], although no standardized test set exists for such type of
data. An effective strategy to deal with variability was to incorpo-
rate additional, longer-term knowledge explicitly into DNN mod-
els: [5, 6, 7, 8] study the incorporation of speaker-level i-vectors to
balance the effect of speaker variability. Time Delay Neural Net-
works [9, 10] use wide temporal input windows to improve robust-
ness. [11] extracts long-term averages from the audio signal to adapt
a DNN acoustic model. Similarly, in [12], we learn a DNN-based
extractor to model the speaker-microphone distance information dy-
namically on the frame level. Then distance-aware DNNs are built
by appending these descriptors to the DNN inputs. We also try
certain speaker and visual adaptive training strategies that result in
about 20% WER on the How-To corpus [1, 2]. We follow the trend
of including additional, longer-term knowledge but with end-to-end
models rather than DNNs.

It is an important distinction that our work does not require lo-
calization of lip regions and/or extraction of frame-synchronous vi-
sual features (lip contours, mouth shape, landmarks, etc.), as is the
case in “traditional” audio-visual ASR [13, 14, 15, 16], which has
been developed mostly with a focus on noise robustness. For the
majority of our data, lip-related information is not available at all, or
the quality is extremely poor. Instead, we will use semantic visual
features such as objects [17] and scenes [18].

Unlike Hidden Markov Models, end-to-end systems are directly
optimized for a sequence of characters, phones, or other target units.
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Fig. 1. Length Distribution for How-To and WSJ Train set

The CTC [19] loss function is defined over a target label sequence,
and introduces an additional “blank” label, which the network can
predict at any frame without influencing the output label sequence.
In CTC training, the sequence of labels are monotonically mapped
to the observations (i.e., speech frames), and outputs appear time-
aligned to inputs. Decoding of CTC models can be achieved with
weighted Finite State Transducers (WFSTs, [20, 21]) or a Recurrent
Neural Network language model [22]. In the latter case, characters
are frequently used as target labels [23]. Finally, attention-based S2S
models [24] can be applied to speech recognition as well [25, 26],
and present an intriguing alternative to conventional models. Still,
their training and decoding are not well understood at this point, in
particular on data-sets for which high-quality annotations may not
be available. We present an analysis of results with these models to
better understand them.

3. DATA AND FEATURES

We conduct our experiments on two data-sets, the Wall Street Jour-
nal (WSJ, SI-284, LDC93S6B and LDC94S13B), and the How-To
audio-visual dataset. The How-To corpus consists of English lan-
guage open-domain instructional videos that explain specific tasks
like baking a cake, or nutrition habits, and have been recorded in
various environments indoors and outdoors (like kitchen, or gar-
den), usually with a portable video recorder [1, 27]. Ground truth
transcriptions of these videos have been created by re-aligning
provided sub-titles, which sometimes are mis-matched because of
missed phrases, word repetitions, hesitations, and other noise and
punctuation that hasn’t been transcribed.

We use 90 and 480 hours of How-To data and 87 hours of WSJ,
and extract 40-dimensional MEL filter banks, with a step size of
30 ms, 3-fold oversampling of the data at 0, 10, and 20 ms offsets,
and stacking 3 neighboring frames together, to give the same 120-
dimensional input vector to both CTC and S2S models. The 90 h
subset of How-To has been selected randomly. We have a separate
4 h test set. 5% of the training data is used as dev set. For WSJ,
we use the eval92 test set. Both models are character-based with 43
labels/tokens: 26 alphabets, 10 digits, and special symbols for {‘.’,
‘”, ‘-’, ‘/’}, space, start and end of sentence.

Figure 1 shows the length distributions for How-To and WSJ
train sets. This shows that for “open-domain” speech data, the dis-
tribution is less normalized when compared with prepared datasets.

3.1. Extraction of Visual Vectors

The visual features used in this paper are the same as those in our
previous work [2]. We extract object and place/scene features from
pre-trained CNNs and perform dimensionality reduction to obtain
100 dimension features. As described above, the data contain in-
door and outdoor recordings of instructional videos where object
and place features are most relevant. We use these features to infer
acoustic and language information from the scene where the utter-
ance has been recorded.

4. MODELS

4.1. Audio-Visual ASR using CTC

The CTC acoustic model (AM) is a stacked bidirectional Long Short
Term Memory (LSTM) model with a soft-max layer at the end to
generate probability of label k ∈ L′ at a particular time step t given
the speech sequence X. Here, L′ = L ∪ φ where L represents the
vocabulary described in Section 3 and φ denotes the special blank
symbol introduced by CTC. To define the CTC loss function we need
a many-to-one mapping B that maps path p = (p1, ..., pT ) ∈ L′T

of the CTC model over length T to an output sequence z. The prob-
ability of z is calculated by summing over all possible paths in CTC.

CTC AM is a frame-based sequence criterion where for every
frame, a conditionally independent probability distribution over all
labels L′ is generated. From this definition, we can infer that CTC is
more dependent on the actual acoustics of the input, and can function
even with poorly transcribed data. We support this hypothesis with
analysis in Section 5.

Decoding strategies to obtain labels from the probability distri-
butions are: greedy search, WFST and character-Recurrent Neural
Network (char-RNN). Greedy decoding outputs the character with
the highest probability value without taking into account any previ-
ous information. We note that this strategy produces good results
with the CTC AM and with visual adaptation as well. The second
strategy for decoding is to re-score the output of the AM with a word-
based WFST LM like our previous work [21]. Char-RNN is a neural
language model like in [22] and provides an all neural model that
can be trained end-to-end.

We implement Visual Adaptive Training (VAT) based on our
previous work [12, 2]. We jointly train a CTC AM and a separate
multi-layer perceptron that is connected to the input LSTM units by
a ‘sum’ operation. This is shown in Figure 2a. The intuition behind
this architecture is that the VAT module will perform a normalization
over the input features (audio) based on the visual information. With
this adaptation, a ‘weighted sum’ of audio and video features gives
us a 120 d features for each frame. Other context information like
i-vectors, can be used with this technique. Although in our previous
work we trained both models in “two-step” fashion (first AM, then
VAT), we experienced higher boost of performance by training both
models jointly, end-to-end. Other types of adaptation such as con-
catenation were tested but none of them outperformed the method
discussed.

Our CTC AM uses 5 layers with 200 LSTM cells each, with a
projection layer of 100 cells between each LSTM layer. We tried
many different architectures to find this best configuration. We use
Stochastic Gradient Descent (SGD) for training. Training on 480 h
How-To data takes 30 hours and greedy decoding takes less than 15
minutes on TitanX GPU with 11GB RAM.
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Fig. 2. Model Architectures

4.2. Audio-Visual ASR using S2S

We implement an attention-based S2S model that is similar to [28,
26]. The encoder transforms the input to a high level, low dimension
encoding, h = (h1, ..., hT ) of length T , and the attention decoder
produces a character probability distribution conditioned on all pre-
vious output. For each layer in the encoder, we concatenate two con-
secutive nodes to get a reduction factor of 2 at each layer and form
a pyramidal encoder instead of a stacked one. This encoder acts as
the ‘AM’ in CTC. The attention mechanism we implement learns
a weighted global context vector Wα calculated using the source
hidden state hs and the current target ht [29]. This context vector
is global as it always attends to all source states s′. We compute a
variable-length alignment vector αt using: exp(hTt .Wα.hs) and this
is normalized over all input s′ as

∑
s′ exp(h

T
t .Wα.hs′). The model

architecture with attention is shown in the Figure 2b.
We note that this type of encoder state concatenation and atten-

tion mechanism are the novelty of the S2S model in this paper and
have not been applied for ASR before. The concatenation method
worked slightly better in our experiments than other reduction meth-
ods reported in [25, 26, 30]. In addition, a dense-nonlinear layer is
used in between the encoder and decoder states. The S2S decoder
implicitly learns an LM using the transcripts although this is a weak
LM. Decoding is performed using beam search.

S2S is a sequence learning criterion that does not try to output
a token for each frame of input. It “attends” over the input and out-
put sequences to align them (multiple frames can be mapped to one
token). This leads us to the hypothesis that S2S is much more depen-
dent on the transcripts rather than the acoustics. Again, we support
this hypothesis with analysis in Section 5.

In our S2S model, we use 3 layers of 512 bidirectional LSTM
cells in the encoder. We use SGD with learning rate of 0.2 and decay
of 0.9. We use curriculum learning [31] for the first epoch to speed
up convergence. We note that our training process is much simpler
than [26, 32, 25]. The decoder is made of 2 layers of 512 bidirec-
tional LSTM cells each. For decoding, we use a beam size of 5. We
do not use any techniques for better decoding with WSJ as given in
[32] but use a length normalization with How-To data, to address the
length distributions variance shown in Figure 1. Training took 4 days
with a TitanX GPU on the 90 h subset. Experiments were performed
using the OpenNMT toolkit [33].

The video adaptation technique we use with S2S is early fusion

where 100 d visual features are concatenated with 120 d audio fea-
tures giving 220 d vector for each frame. Our experiments with early
fusion show that S2S benefits with this technique while CTC or DNN
[12] does not, moreover gives better gains that VAT for CTC.

5. EXPERIMENTS AND ANALYSIS

5.1. Visual Feature Adaptation

In Table 1, we present the effect of adaptation on the Token Error
Rate (TER) and Perplexity (PPL) of the two models. We show that
the adaptation with visual features helps improve the absolute TERs
by 1% in CTC and by 1.6% in the S2S model. Using length norm
as in Section 5.3, we improve the S2S improvement to 2%. In our
experience, this is a significant improvement in such sequence-based
models. The PPL values for CTC are those of a word LM while those
of S2S are of the implicit character LM (*). We see that adapting a
language model with visual features helps decrease the perplexity
by a huge margin. This establishes that there is a strong correlation
between visual features and speech. The perplexity for S2S models
is the character-prediction perplexity (joint AM, LM) and we see
that there is no difference in this case. We calculate TER as our
experiments with greedy decoding for CTC AM showed good results
with the visual adaptation, and the implicit LM of S2S was also quite
strong, as we show below. The ‘dev’ set is a tougher set than the
‘test’ set in the How-To dataset.

A CTC A+V CTC A S2S A+V S2S
TER dev 15.2 14.1 18.4 16.8
TER test 13.6 13.1 16.3 15.7
PPL* dev 113.6 80.6 1.38 1.37
PPL* test 112.0 72.0 1.05 1.05

Table 1. Results for Audio(A) and Audio-Visual(A+V) adaptation
with the How-To data

5.2. CTC vs. S2S

We compare the audio-only CTC and S2S models trained on WSJ
and 90 h subset of How-To in Table 2. TER with CTC and S2S on
WSJ is a strong baseline compared to prior work [23, 34, 25, 30].
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We see a huge disparity in ASR for clean prepared data (WSJ) and
real application data (How-To) as discussed in Section 3. We also
note that for noisy data like How-To, CTC required 5 times as much
data to make the error rates between S2S and CTC comparable.

CTC S2S
WSJ 6.9 7.9

How-To 18.5 15.3

Table 2. TER of CTC and S2S on WSJ (rval92), How-To(test set)

Table 3 shows an example from the How-To test set which high-
lights the fundamental difference between the CTC and S2S model
when applied to “real” data: while the TER for both models is sim-
ilar in value, it stems from different types of mistakes. The CTC
model’s output is closer to the acoustics and produces characters
even for corrections and false starts (even though those were also not
present in the training transcripts, according to our analysis); there
is a need for language model re-scoring. The S2S model however
takes more liberty in character prediction and the resulting output is
a combination of the acoustics, and the language model, which has
been trained to ignore false starts. Even on an S2S system that has
been trained on 90 h only, it appears that the inbuilt language model
is strong and does not produce out of vocabulary words like CTC
does, similar to the effect we observed when decoding CTC AMs
with an RNN LM on the Switchboard corpus [35].

Spoken now it does only say for do- or doesn’t even say for
dogs or cats it’s neither

Reference now doesn’t even say dogs or cats it says neither
Greedy
CTC

now it does only saye for dog or toat use a dogs or
cats s niter

S2S now it doesn’t we say for a dog or that use a dogs
or cats so is night or

AV S2S now it doesn’t leave safer dog or it does use a dogs
or cat so in night or

Table 3. Typical transcription on How-To test set: the CTC model is
close to acoustics even during a correction (following “do-”), while
S2S keeps to the style of the reference, which is itself an abstraction
of the spoken content. Currently, there is little semantic difference
between regular and adapted (AV) S2S (or CTC) output.

5.3. WSJ vs. How-To in S2S

Figure 3 compares reference length to hypothesis length for 40 short
and long WSJ and How-To test utterances. On WSJ, the range of
lengths of short and long utterances are similar, and reference and
hypothesis follow each other closely. On How-To, hypothesis pre-
diction is very unstable and the model makes a lot of mistakes, even
breaks completely at times. Length of the hypothesis is greater than
the length of reference for short utterances, while it is lesser for
longer utterances. As seen from the example in Table 3, the output of
the S2S model is much closer to the reference transcript. The model
learns a form of length normalization over the entire dataset hence
performs badly on short and long utterances. We use the length nor-
malization factor during decoding to stabilize the output of the S2S
model and get absolute improvements of 2% (dev) and 1% (test) for
the non-adapted case, which is slightly better than the adapted case
and shows that adaptation stabilizes model performance. With our
model we see no need for normalization on WSJ, different from [32].

Fig. 3. Length normalization by S2S for WSJ and How-To

6. CONCLUSIONS AND FUTURE WORK

In this paper, we describe and compare two end-to-end models that
learn semantically relevant context information from the visual chan-
nel of a video, and use it to improve speech transcription. We show
how to adapt a CTC bidirectional LSTM acoustic model and a S2S
model to the visual semantic features. We compare the behavior of
CTC and S2S models on a clean (WSJ) and noisy (How-To) dataset,
and see that CTC output tends to be very close to the acoustics of
an utterance, while S2S output appears to be closer to the style of
the transcriptions. Similar to [36], we find that S2S approaches
are maybe surprisingly robust against “real-world” data, that has not
been carefully prepared for speech recognition experiments. On the
WSJ dataset, our system outperforms previous S2S implementations
like [30]. Next, we would try more adaptation strategies like the
MLP shift with S2S model and re-scoring output of CTC with a
char-RNN LM to form an all neural model.
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