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ABSTRACT

Research on multilingual speech emotion recognition faces
the problem that most available speech corpora differ from
each other in important ways, such as annotation methods
or interaction scenarios. These inconsistencies complicate
building a multilingual system. We present results for cross-
lingual and multilingual emotion recognition on English and
French speech data with similar characteristics in terms of in-
teraction (human-human conversations). Further, we explore
the possibility of fine-tuning a pre-trained cross-lingual model
with only a small number of samples from the target language,
which is of great interest for low-resource languages. To gain
more insights in what is learned by the deployed convolu-
tional neural network, we perform an analysis on the attention
mechanism inside the network.

Index Terms— Speech Emotion Recognition, Multilin-
gual, Cross-lingual, CNN, Attention

1. INTRODUCTION

The common approach to automatic emotion recognition is
to train and test a classifier on one annotated (mostly mono-
lingual) corpus, either by subdividing the data into train, vali-
dation and test sets or by means of cross-validation. This way,
the system is highly specialized with respect to a number of
factors, such as the speaker group, the recording situation, the
language, and the type of speech (spontaneous or acted). Fur-
ther, no conclusions can be drawn to what extend such a sys-
tem can generalize across different interaction scenarios and
languages. For this reason, we investigate cross-lingual and
multilingual speech emotion recognition, as a step towards
language-independent emotion recognition in natural speech.

In addition to the aforementioned reasons, cross-lingual
classification can possibly facilitate emotion recognition for
scenarios with no or only a small amount of annotated data in
the target language, which we refer to as low-resource setting.

Various cross-corpus analyses have been conducted in re-
cent years [1, 2, 3, 4, 5]. In an extensive study with six cor-
pora, [1] examined many different combinations of corpora
as training set, without focusing on one certain aspect of the
data (e.g. different language or different interaction scenario).

Although this study gives an overall impression on the per-
formance of cross-corpus emotion recognition, it makes the
interpretation of results difficult because it is not clear which
factors have what kind of impact. Focusing on cross-language
emotion recognition, [6] presented a comprehensive overview
using 8 languages from 4 language families and showed that
cross-language emotion recognition is feasible, but with no-
tably lower accuracy than mono-lingual recognition.

An approach to multilingual emotion classification us-
ing language identification and model selection is presented
in [7]. In contrast to this work where language-dependent
models are trained and then selected accordingly, we ex-
amine the performance of one model trained on multiple
languages. Another strategy to combine two languages for
emotion recognition, described in [8], is to apply histogram
equalization to remove cross-language variability. In [9], the
authors compare automatic cross-lingual recognition with
human perception of emotion.

Concerning classification performance it is difficult to
compare to related research in this field, because there are
no standards regarding several factors, including the number
of classes, the division of corpora into train and test sets,
the underlying emotion concepts (categorical emotions or
continuous arousal/valence dimensions). Hence, we cannot
discuss state-of-the-art performance in this study, because
the aforementioned works differ in at least one of these re-
spects, mostly in the number of classes, the utilized databases
or the mapping between continuous and discrete annota-
tions. The focus of the present research is on multilingual
and cross-lingual speech emotion recognition compared to
mono-lingual baselines trained on the respective corpora, as
well as on an analysis of the attention mechanism used in
the recognition system. We show that multilingual emotion
recognition is feasible without adaptation to the language and
present promising results for cross-lingual training followed
by fine-tuning on the target language.

2. MODEL ARCHITECTURE

For this study we train an attentive convolutional neural
network (ACNN) for binary classification of arousal and va-
lence in speech. The model architecture is mainly adopted
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Fig. 1. Model topology.

from [10] and adjusted to this task and the cross-lingual set-
ting. Figure 1 depicts the network topology schematically.
As input features to the ACNN, 26 logMel filter-banks are ex-
tracted frame-wise from the segmented speech signal (frame
size of 25ms and a window shift of 10ms). The input has fixed
length of 7.5s, shorter utterances are padded with zeros at the
end. The convolution kernels span all 26 features (1-D con-
volution over time). The output from the max-pooling layer
is fed into an attention layer which computes a weighted sum
of the information extracted from different parts of input. The
input to the fully connected softmax layer at the end is the
concatenation of attention vector and the feature maps from
the pooling layer.

The attention layer computes attention weights αi over all
feature maps for each time step i. Equation 1 shows the com-
putation of these attention weights αi for an input sequence x
consisting of vectors xi, where f(x) = WTx, with W being
a trainable parameter.

αi =
exp(f(xi))∑
j exp(f(xj))

(1)

The output of the attention layer, attentive x, is the
weighted sum of the input sequence.

attentive x =
∑
i

αixi (2)

The intuition behind using an attention mechanism for
emotion recognition is that emotional information is dis-
tributed differently over the signal. Therefore, we want to
first weight the information extracted from different pieces of
the input and then combine them in a weighted sum.

3. ENGLISH AND FRENCH EMOTIONAL SPEECH

We use two corpora of emotional speech which are frequently
used and freely available. The main criterion for selecting the

data was that the corpora contain the same type of speech in
terms of conversation type (human-human) and naturalness.

The interactive emotional dyadic motion capture database
(IEMOCAP) [11] is a multimodal database of English dyadic
conversations containing both fixed speech (scripted dialogs)
and free, spontaneous speech (improvised dialogs given a
certain scenario and topic). The speakers are professional
actors. IEMOCAP is annotated on turn level in two ways,
with categorical emotion labels (such as ’anger’, ’happiness’,
’sadness’) and with 5-point scales on the dimensions valence,
arousal and dominance (1 - low/negative, 5 - high/positive).
The corpus contains 10,039 utterances.

Recola [12] is a multimodal database of French speech
consisting of dyadic conversations during a video conference
where participants had to solve a collaborative task. From
46 speakers in total, we use the freely available portion of 23
speakers in this study, consisting of 1,308 utterances. Recola
is annotated with continuous labels for arousal and valence in
the range [-1, 1] on a 40ms rate. Annotation was done with
ANNEMO [12], a tool similar to Feeltrace [13]. Since we are
interested in recognition of emotions on utterance level, we
calculated the mean of all values for one turn, and then took
the average across all annotators as the final label.

To be able to train a model on several corpora, the prob-
lem of different annotation schemes has to be overcome.
We decide to focus on a binary classification task of arousal
(low/high) and valence (negative/positive).1 The mapping of
original annotations to a binary scheme is shown in Table 1.

Low/Negative High/Positive
IEMOCAP range [1, 2.5] range (2.5, 5]
Recola range [-1, 0] range (0, 1]

Table 1. Mappings to binary arousal/valence classes.

4. EXPERIMENTAL SETUP

We conduct the following four experiments: (a) mono-lingual
(as baseline), (b) multilingual (merge Recola and IEMOCAP
for training), (c) cross-lingual (train on one corpus, test on the
other one), and (d) fine-tuning of a model trained in (c) in a
simulated low-resource setting.

For (a) mono-lingual and (b) multilingual experiments we
apply cross validation (CV) because there are no predefined
train and test splits for these datasets. The IEMOCAP data
consists of five sessions with one male and one female speaker
each. We take data from four sessions to construct training
and development sets and use the remaining session for test-
ing, resulting in 5-fold CV. For Recola, we construct manually
five splits so that they are balanced with respect to number of

1class distribution IEMOCAP: arousal - 3,121 low, 6,918 high; valence -
3,421 neg., 6,618 pos. — Recola: arousal - 520 low, 788 high; valence - 241
neg., 1,067 pos.
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speakers and sex. This way, we ensure speaker-independent
training (in contrast to random sampling).

The evaluation of (c) cross-lingual training is more
straightforward, we take all data of one language as train-
ing set and all samples of the respective other as test set.
For (d) fine-tuning (FT) in the simulated low-resource setup
we take trained models from (c) as starting point. The model
is then refined using 100 randomly selected samples from the
target language for each CV split. Consequently, only 500
samples of the target language are used in total for FT.

In order to observe variations in the results due to non-
deterministic operations on the GPU, we run all experiments
five times and report the means.

Hyper-parameters

The ACNN model is implemented with the Tensorflow li-
brary [14]. We apply stochastic gradient descent with an
adaptive learning rate (Adam [15]) for training. The systems
hyper-parameters are the following: 200 kernels with a size
of 26x10 in the convolutional layer (spanning all 26 logMel
filter-banks); a mini-batch size of 32; and a pool size of 30 for
max-pooling. For regularization we apply dropout ([16]) to
the last hidden layer with a dropout rate of 0.5. We run train-
ing for 50 epochs in all experiments except for fine-tuning
where the pre-trained models are refined with only 10 epochs.

The kernel width of 10 and the pool size of 30 were se-
lected by tuning the mono-lingual models on the develop-
ment set with a number of different parameter combinations.
These relatively high values appear reasonable considering
that emotions in speech are determined as long-term infor-
mation. The kernel size of 10 corresponds to 100ms from the
input signal. A large amount of overlap in the feature maps
explains the large pooling window.

5. RESULTS

The performance measure used throughout all experiments is
unweighted average recall (UAR, i.e. the average of the recall
for each class). This measure best reflects the overall accuracy
when the dataset is imbalanced with respect to the number of
samples per class. The results are presented in Table 2.

The mono-lingual baselines for both IEMOCAP and
Recola show that the prediction of valence is more difficult
than arousal. This finding is in line with [3, 6, 17]. The
performance for Recola is notably lower than for IEMOCAP.
This is only partially due to the small size of Recola (1,308
samples). Using only 1,308 samples from IEMOCAP in
comparison still leads to better results for English (68.20%
arousal and 58.77% valence). Another possible reason is that
the French data is highly imbalanced for valence (UAR of
52.30% is only slightly better than chance).

With multilingual training we want to investigate the ef-
fect of merging the two corpora and find out whether multi-

IEMOCAP Recola
(English) (French)

Arousal Valence Arousal Valence
mono-lingual 68.09 62.33 60.77 52.30
multilingual 70.06 61.73 62.51 49.33
cross-lingual 59.32 49.08 61.27 47.52
CL + FT 67.03 50.42 63.07 49.81

Table 2. Results as unweighted average recall (UAR), cross-
lingual: only trained on source language, CL + FT: pre-
trained on source language and fine-tuned on 500 samples
from target lanugage (CL - cross-lingual, FT - fine-tuning).

lingual speech emotion recognition is possible without per-
formance loss. The results show that we are able to use a
system trained on both languages and achieve similar perfor-
mance compared to the baselines. For arousal prediction, the
additional training data even improves performance, whereas
we observe a decrease in performance for valence. These
findings are a first evidence that multilingual speech emotion
recognition is viable without further adaptation.

Cross-lingual training is useful in cases where no or
only little training data in the target language is available.
We therefore examine the performance of the system when
trained on one language and tested on the other (and vice
versa), given the same type of speech (human-human in-
teraction). The results in Table 2 show that cross-lingual
training works to some extend for arousal but not for valence
prediction. For arousal, the performance drops notably for
IEMOCAP (trained on Recola) compared to the mono-lingual
baseline, achieving 59.32% UAR. For Recola (trained on
IEMOCAP) it remains stable (60.77% mono-lingual, 61.27%
cross-lingual). For valence, both results are below chance,
suggesting that valence prediction might be more language-
dependent than predicting arousal.

Fine-tuning the cross-lingual model with 10 training
epochs on 500 samples from the target language produces
promising results for arousal prediction. For IEMOCAP, the
performance comes close to the baseline and for Recola, it is
notably higher than the baseline. Again, the performance for
valence remains approximately at chance level.

In summary, these results show that cross-lingual train-
ing can set a useful baseline. Especially for a target language
with a small amount of annotated data, training a cross-lingual
model and then fine-tuning it on the available target data ap-
pears to be a reasonable approach.

6. ANALYSIS OF ATTENTION WEIGHTS

To gain more insights about which parts of the input are im-
portant for classification, we analyze the attention weights αi

from the attention layer after the last training epoch. We focus
on the mono-lingual baseline experiments in arousal predic-
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Fig. 2. Distribution of attention over time for arousal predic-
tion on IEMOCAP.

Fig. 3. Distribution of attention over time for arousal predic-
tion on Recola.

tion. For each training sample, we output its attention weights
and identify the maximum weight, i.e. the segment which ap-
pears to be most salient for this sample. Figures 2 and 3 show
for every attention weight α1 to α8 the particular proportion
of training samples for which this αi yielded the maximum
value. For example in Figure 2, for 31.2% of training sam-
ples, α1 was highest, hence the first segment of the input to
the attention layer is considered most salient. The number of
attention weights corresponds to the output vector of the max-
pooling layer and therefore depends on input signal length,
kernel size and pool size. Figure 2 shows this distribution for
the English data and Figure 3 for French.

From Figure 2 it can be observed that for a large major-
ity of samples the attention lies at the beginning of the input.
This finding is in line with the observation in [10] that a short
snippet from the beginning of an utterance can be sufficient

for a prediction in many cases. In addition to depicting the
maximum attention weights, we took a closer look at the ac-
tual values of the maximum and the second highest weight
to find out more about the weight distribution. Note, that the
weights α1 to α8 sum up to 1.0 for every sample. For the
English training data we found that for 73.1% of all samples
the difference between highest and second highest attention
weight is greater than 0.5. This means, for the majority of
data one segment is weighted much higher than all others.

For the French data, the picture looks a bit different. Fig-
ure 3 reveals that α2 to α4 yield the maximum weight for
a large proportion of data. Apart from α1, the distribution
exhibits similar characteristics as in Figure 2, that the begin-
ning of the input is much more often considered important
than the end. Our first hypothesis to explain the low rate for
α1 was that many samples contain silence at the beginning.
However, using voice activity detection, we found that most
signals contain speech straight from the beginning. Hence,
further analysis is necessary to explain this difference. In
the Recola dataset the difference between highest and second
highest attention weights is only for 5% of training samples
greater than 0.5. This overall flatter distribution suggests that
it is more difficult to learn meaningful attention weights for
the French data compared to English.

To conclude this analysis, we have found notable differ-
ences in the attention mechanism between the two datasets.
But it is difficult to draw final conclusions about the lan-
guages themselves because the corpora are not recorded
under same conditions (especially the underlying task for the
participants). Hence, these findings point towards language-
dependent characteristics in emotional speech, but are po-
tentially skewed by language-independent factors such as
recording situation or the lexical content of the conversations.

7. CONCLUSION

We presented results for binary arousal/valence classifica-
tion using cross-lingual and multilingual training. We have
shown that multilingual classification of emotions in speech
is possible and can even enhance results for arousal predic-
tion. This can be regarded as a valuable finding for research
on code-switching speech. Further, we have shown that a
model trained on a source language and fine-tuned with only
a small number of samples from the target language can pro-
duce sound results for arousal prediction, whereas valence
prediction appears to be more sensitive to cross-lingual train-
ing. These findings are potentially interesting for emotion
research on low-resource languages.
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