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ABSTRACT 
 
A 3-dimensional convolutional neural network is trained on 
unlabeled ultrasound video to predict an upcoming tongue 
image from previous ones. The network obtains results 
superior to those of simpler predictors and provides a 
starting point for exploiting the higher-level representation 
of the tongue learned by the system in a variety of 
applications in speech research. This work is believed to be 
the first application of convolutional neural networks to 
unlabeled ultrasound video for the purpose of predicting 
tongue movement.      
 

Index Terms— convolutional neural networks, motion 
detection, unsupervised learning, speech production, 
ultrasound, tongue, silent speech interface 
 
 

1. INTRODUCTION 
 
In the past several years, deep convolutional neural 
networks, CNNs, have become the state of the art technique 
for object recognition. Such architectures are believed to 
encode high-level representations of objects by leveraging 
massive image databases and powerful graphical processing 
unit (GPU) hardware [1]. A crucial difficulty of the method 
is obtaining sufficient labeled data to train the networks. 
Recently, building high-level representations by training 
networks to predict future configurations from past behavior 
in video data has been proposed as a means of eliminating 
the expensive labeling step [2-5].  

Ultrasound imaging of the tongue has been used for 
many years in research on speech production and pathology 
[6]; nevertheless, reliable extraction of high-level features 
from ultrasound data – a labeled contour for example – 
remains a challenge. In the present article, we investigate for 
the first time whether CNNs can be used to predict tongue 
motion from unlabeled ultrasound video sequences, with the 
aim of building a high-level representation of tongue 
dynamics for applications in speech research.  
 

2. RELATION TO PRIOR WORK 
 
The applicability of deep learning techniques to raw 
ultrasound data was confirmed in [7][8], where a deep belief 
network performed static tongue contour extraction, as well 
as in [9][10], where CNNs were applied to supervised 
classification of phonetic targets in the context of a silent 
speech interface [11]. 

As CNNs convolve input data with fixed kernels, they 
were initially thought a poor fit to motion detection, where 
data-data correlation techniques have been the norm. In 
[12], however, CNNs nevertheless gave the best 
performance on supervised optical flow learning tasks. A 
difficulty discovered in applications of CNNs to prediction 
of future video frames is the tendency of networks trained 
on intensity-based mean squared error (MSE) objective 
functions to output “fuzzy” versions of past images rather 
than concentrating on movement. The use of novel objective 
functions [3] and vector-quantization of the image space [2] 
have been proposed to address this difficulty – unfortunately 
at a cost of increased computational complexity. A 3DCNN 
[13] includes the time dimension explicitly by exploring 
stacks of consecutive input images with 3-dimensional 
kernels. This architecture gave excellent results on the 
related task of supervised human gesture recognition 
[13][14]. The present article describes the first use of a CNN 
– in this case 3DCNN – for predicting tongue motion in 
unlabeled ultrasound data, also with good results.  

The image datasets used are outlined in the next section. 
Section 4 details the CNN architecture and training 
procedure, while results and discussion are presented in 
section 5. Conclusions and future perspectives appear in 
section 6.     
 

3. DATASETS AND ENHANCEMENTS 
 
3.1. Datasets   
 
Data were recorded as 320x240 pixel sagittal ultrasound 
tongue images using an acquisition helmet that stabilizes a 
4-8 MHz, 128-element, microconvex ultrasound probe 
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beneath the speaker’s chin. Images were re-sized to 96x96 
pixels. The experiments are based upon two principal 
datasets, detailed below. 

1.  “WSJ0” data, 60 frames per second, derived from 
the Silent Speech Challenge containing over 
700,000 TIMIT training images and some 35,000 
WSJ0 test images, as described in [15]; 

2. “TJU” data, 30 frames per second, produced at 
Tianjin University by a volunteer reading a simple 
training passage (9900 images) and test passage 
(4800 images). A region of interest, ROI, 
containing the tongue was selected before resizing.  

 
3.2. Snake contour extraction on the TJU dataset  
 
Tongue contour visibility in the WSJ0 data was mediocre, 
but the speaker in the TJU data imaged very well, allowing 
the extraction of an estimated contour for each TJU image 
with a snake algorithm [16]. These were used both to devise 
a complementary experiment, as described below, and as a 
tool to test performance.  
 

4.  3DCNN ARCHITECTURE AND TRAINING 
 
A number of architectures, including CNN variants and 
recurrent neural networks, RNNs, were tested before settling 
on the 3DCNN described below. Many solutions worked 
well on “sharp” input features such as a snake contour, but 
only the 3DCNN gave satisfactory performance on the 
noisy, diffuse features of raw images – perhaps because the 
time-stacked aspect of the 3DCNN allows for noise 
suppression via averaging. The architecture developed is 
illustrated in figure 1. It consists of 6 layers, with feature 
map multiplicities of 1-16-32-64-32-16-1. The input to the 
network for all experiments was of size 96x96x8, and the 
output 96x96. Each of the first 3 layers performs a 3D 
convolution, max pooling, and batch normalization, while 
the last 3 layers perform up-sampling, convolution, and 
batch normalization (except last layer). 

Three experiments were designed and carried out: 
 
1. “WSJ0”: Eight consecutive WSJ0 images were 

used to predict the 9th WSJ0 image, using an MSE 
objective function between the prediction and 
actual next image. 

2. “TJU”: Eight consecutive TJU images were used to 
predict the 9th TJU image, using an MSE objective 
function between prediction and actual next image. 

3. “Cross”: Eight consecutive TJU images were used 
to predict the snake contour of the 9th TJU image, 
using an MSE objective function between an image 
of the predicted next snake and an image of the 
actual next snake; compared images contain only 
the snake, without the ultrasound background 
image. 

    

 
 
Figure 1. Structure of the 3DCNN used in the tests. 
 

5. RESULTS AND DISCUSSION 
 
5.1 MSE Performance 
 
In table I, the MSE performance of the 3DCNN 9th image 
predictor is compared to that of three other predictors: the 
average of the preceding 8 images; the 8th image alone; and 
a linear predictor based on the previous 8 images. In all 
experiments, the 3DCNN gives superior results (note that 
MSE values cannot not be compared across columns, due to 
the different data types). Since it is not possible to output a 
snake using Average, 8th image, or Linear predictors, the 
MSE marked with a * in the Cross column is that between 
the snakes of the 8th and 9th images, as a rough comparison 
(see also the discussion of Cross results in section 5.3).  
 
Table I. Mean MSE on 3 datasets for different predictors 
 

 WSJ0 TJU Cross 
Average 39.2 73.6 - 
8th image 31.0 40.0 279.5* 
Linear  27.9 38.1 - 
3DCNN 21.7 32.6 154.9 

*MSE between snakes of 8th and 9th images 
 
It is instructive to examine the time evolution of the 

MSE per image over several seconds, see Figure 2. A 
careful inspection of the data confirmed that the “peaks” in 
the plots correspond to high tongue velocities, and the 
“valleys” to more stable configurations. The 3DCNN 
predictor is thus best at predicting rapid tongue movement, 
while the linear or 8th image predictors are often better in 
static situations – also explaining the behavior at the 
beginning and end of the WSJ0 plot where the speaker 
assumed a “rest” tongue position before and after each 
sentence. Poorer performance on stable configurations is 
understood as the inability of the 3DCNN to model time-
correlated speckle noise, whereas the simpler predictors 
contain this intrinsically. That this is indeed the correct 
interpretation, and that 3DCNN predictions remain of good 
quality in these regions, was verified through careful 
inspection. The two 3DCNN “poor performance bumps” 
near images 60 and 240 in the TJU data, on the other hand, 
were found to correspond to fixed-position ultrasound 
artifacts (floor of the mouth, palatal trace, etc.). This 
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phenomenon was not observed in the WSJ0 data, 
presumably due to the bigger training set, nor in the Cross 
data, where the snake images used ignored such artifacts. 
Finally, the WSJ0 figure shows that the Average predictor 
introduces a significant delay, and is not useful here. 
 

 
Figure 2. MSE of different predictors for the WSJ0 Challenge Data 
(top); TJU Data (center); and Cross Data (bottom) over a 250 
image sequence (about 4 seconds). The 3DCNN predictor, in red, 
gives better results on all three datasets. N.B.: For clarity, the 
Average predictor (green) does not appear in TJU and Cross plots. 
Also, in the Cross plot, the Linear predictor is not included, and the 
8th image MSE refers to the snake of the 8th image, see text. 

 
5.2 Validating motion detection 

 
In order to validate that the good MSE performance of 
3DCNN is indeed related to movement prediction, and not 
the result of “blurring”, as mentioned in Section 2, two tests 
were performed. The first was to compare an overlay of the 
8th and 9th WSJ0 images, to an overlay of the 8th WSJ0 
image and the 3DCNN prediction of the 9th WSJ0 image. 
The result appears in Figure 3, where we note that the 
overlap of a green and a red pixel produces a yellow one. 
The slightly upward-shifted red image, corresponding in the 
left panel, to the true 9th image, and on the right, to its 
prediction, is clearly visible with respect to the green 8th 
image – particularly in the tongue contour area near the tops 
of the images. This sequence was selected from a high 
tongue velocity region, as the shift is often difficult to 
discern. 

The second test devised to show that good 3DCNN 
results arise from movement prediction and not simple 
“blurring” was performed on the TJU data making use of the 
extracted snake contours. A “snake update” here consists of 
moving each snake point to the center of the brightest 3-
pixel square area within a defined “valid” region. To 
perform the test, the snake was updated on 8 consecutive 
ultrasound images, and, for the 9th update, either on the 9th 
true ultrasound image, or on the 3DCNN prediction of the 
9th ultrasound image. The results are shown for two example 
cases, in the upper and lower panels of Figure 4. In each 
example, the green snake of the 8th ultrasound image is 

compared, on the left, to the red snake of the 9th true image, 
and on the right, to the red snake of the 9th predicted image. 
It is seen that the 3DCNN algorithm can indeed follow 
tongue movement in the TJU data with an error level of only 
a pixel or two.  
 

 
 
Figure 3. Image sequence from WSJ0 Challenge Data. Left: 
overlay of 8th image (green) and 9th image (red); Right: overlay of 
8th image (green) and 3DCNN prediction of 9th image (red). 
Tongue movement reproduced by 3DCNN prediction is visible in 
the tongue contour near the top of the image. N.B. The overlap of a 
red and a green pixel appears yellow. 

 

  
 

  
 
Figure 4: TJU Data. Top left: overlay of snake of 8th image (green) 
and snake of 9th image (red); Top right: overlay of snake of 8th 
image (green) and snake of 9th image prediction (red). Bottom left 
and right: same overlays for another sequence.  
 
5.3 Relevance of the Cross dataset 
 
The MSE performance and the preceding tests demonstrate 
that the 3DCNN is indeed able to predict tongue motion in 
real time ultrasound video. This however is, of course, not 
the goal of the exercise. If the technique has indeed enabled 
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the construction of an internal representation that models 
image content and dynamics [3] – of the tongue in this case 
– then it ought to be possible to exploit this representation to 
perform some useful task of importance to speech 
processing. The Cross dataset was created to enable a first 
look at this hypothesis.  

The Cross dataset training, as described in section 4, is 
similar in some respects to the contour finding carried out in 
[7][8], with the key difference that here, the prediction 
refers to a future contour. The question posed is whether the 
3DCNN can isolate the dynamics of a precise, acoustically 
relevant feature – in this case the sagittal tongue contour – 
using only unprocessed ultrasound images as input, with the 
caveat that, contrary to the WSJ0 and TJU cases, labeled 
contours are in fact a necessary element this time. The 
technique works extremely well, as can be seen in the 
videos available at [17][18], where true and predicted 
snakes atop ultrasound images, as well as overlays of the 
two obtained snakes, respectively, are exhibited. The Mean 
Sum of Distances [19], MSD, between the 3DCNN 
prediction and the 9th image snake was measured to be 1.1 
pixels, corresponding to 0.4 mm for these data. Outtakes 
from the videos for three examples appear in Figure 5. The 
third example shows a case in which the true and predicted 
snakes are rather different; interestingly, the predicted 
contour may actually be the more correct one. The success 
of the Cross data experiment is thus a promising first step 
towards creating a higher-level model of tongue dynamics 
that may be useful in a variety of concrete applications in 
speech research. 

 

 
 
Figure 5. Snake of 9th image (left, in green); snake of predicted 9th 
image (center, in red); and overlay of the two curves (right); for 
three example tongue contour shapes. 
 
 

6. CONCLUSIONS AND PERSPECTIVES 
 
A 3DCNN has been shown capable of predicting future 
frames in raw ultrasound video with pixel level accuracy. 
When trained to predict instead a tongue contour, results 
suggest that the system possesses an internal representation 
of tongue dynamics that could provide useful input for 
subsequent speech research tasks. Future work will include 
more powerful GPU hardware; studies of alternate objective 
functions; experiments with vector quantization of the 
image space (as in [2]); and, finally, a test of the method as 
a front-end for a silent speech recognition system.  
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