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ABSTRACT

Automatic speech recognition (ASR) systems have achieved high
recognition performance for several tasks. However, the perfor-
mance of such systems is dependent on the tremendously costly
development work of preparing vast amounts of task-matched tran-
scribed speech data for supervised training. The key problem here is
the cost of transcribing speech data. The cost is repeatedly required
to support new languages and new tasks. Assuming broad network
services for transcribing speech data for many users, a system would
become more self-sufficient and more useful if it possessed the
ability to learn from very light feedback from the users without
annoying them. In this paper, we propose a general reinforcement
learning framework for ASR systems based on the policy gradient
method. As a particular instance of the framework, we also propose
a hypothesis selection-based reinforcement learning method. The
proposed framework provides a new view for several existing train-
ing and adaptation methods. The experimental results show that the
proposed method improves the recognition performance compared
to unsupervised adaptation.

Index Terms— reinforcement learning, policy gradient method,
hypothesis selection, deep neural network, speech recognition

1. INTRODUCTION

Today’s ASR systems heavily rely on supervised training using large
amounts of task-matched training data to achieve high recognition
performance. To prepare labeled speech data, a large transcription
cost is required. This is particularly a problem for resource-limited
languages. However, even for resource-rich languages, a significant
factor that limits the application area of ASR is the additional tran-
scription cost required to support new tasks that are different from
the initial training condition.

When considering network applications of ASR with many
users, one strategy to improve the system performance without
incurring development cost is to utilize feedback from the users
while providing recognition results to them. Ogata et al. devel-
oped a web service called Podcastle that uses a speech recognizer
to automatically transcribe speech contents in podcasts such that
the users can read and search them [1, 2]. The system includes a
user interface that allows the users to correct the recognition errors
word by word. By gathering the corrected transcriptions, the ASR
system can be re-estimated and improved by using any supervised
model training or adaptation methods [3, 4, 5, 6]. For this sys-
tem, the motivation for the users to fix the errors in the automatic
transcriptions is to contribute to sharing the contents that they like.
However, a considerable amount of effort is required to produce
a correct transcription, and the user contribution would be limited
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to those contents that have enthusiastic listeners. If users are only
asked about the recognition quality rather than the corrections of the
errors in the transcriptions, and the system could utilize the scalar
feedback to update the model by reinforcement learning, it would
greatly reduce the effort required by the users. By reducing the
effort of users, larger applications would become possible.

Reinforcement learning is based on the common sense idea that
if an action is followed by an improvement in the state of affairs, then
the tendency to produce that action is strengthened [7]. The two ma-
jor formalizations of reinforcement learning are value-based meth-
ods including Q-learning approaches [8, 9, 10], and policy-based
methods including policy gradient methods [11, 12]. In this paper,
we first formulate a very general reinforcement learning framework
for ASR systems based on the policy gradient method. Then, we
propose a reinforcement learning method following the framework,
where the feedback is based on hypothesis selection by the users.

The remainder of this paper is organized as follows. We first
briefly review the application of reinforcement learning in speech
information processing in Section 2, and the policy gradient method
in Section 3. We then explain our proposed method in Section 4
and our implementation for experiments in Section 5. The experi-
mental setup is described in Section 6, and the results are shown in
Section 7. Finally, the conclusions are presented in Section 8.

2. RELATED WORK

There have been many studies that apply reinforcement learning to
speech dialogue systems to improve dialogue control [13, 14, 15].
For source enhancement, Koizumi et al. have proposed a Q-learning-
based method for a DNN-based system [16]. In their method, the
speech enhancement performance was improved based on feedback
from human evaluators about the perceptual quality of the enhanced
speech. However, studies that apply reinforcement learning to ASR
systems are limited, as noted in [17].

In studies on ASR, Nisida et al. have proposed a method that
tunes an update coefficient τ of the MAP adaptation for GMM-
HMM [18]. Their method used a confidence measure (CM) obtained
from the result of Viterbi decoding of an utterance as the reward.
Therefore, there was no human interaction. A small τ was used for
speech segments with high confidence, and a large τ was used for
segments with low confidence. Molina et al. have proposed a two-
pass decoding method that was also based on CM [17]. The idea
was to reinforce the phone models in the second pass if they had a
high confidence value, whereas they were weakened if they had low
confidence. In the algorithm, the choice of the phone models in the
decoding process is regarded as an action of reinforcement learning
in a broad sense. The CM was estimated in the first pass, and it was
used in the second pass by adding the value to the acoustic likeli-
hood. The algorithm was for a decoding process, and the acoustic
model was not updated. These methods were based on intuitive ideas
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to modify the model update or decoding process based on CM. How-
ever, their connections to the major formalizations of reinforcement
learning methods were not explained. In the same sense, the two-
pass unsupervised adaptation algorithms that reject low confidence
hypotheses (e.g. [19]) may also be seen as a type of reinforcement
learning.

3. POLICY GRADIENT METHOD

As the general setup for the policy gradient method-based reinforce-
ment learning, a system has a set of actions and a policy function f
that takes a state s and returns a probability distribution Pf (a|s) of
an action a to take. The policy function is parameterized by a set
of parameters θ. From Pf (a|s), an action is sampled and executed.
According to the action, the system gets a scalar reward rs (a).

The goal of the learning is to maximize the expected reward
E [rs (a)] =

∑
a Pf (a|s) rs (a) with respect to θ. The maximiza-

tion can be performed by applying the gradient ascent method. How-
ever, the key points here are that, while the reward rs (a) can be eval-
uated given the choice of the action, there may not exist an analytical
functional form of the reward, and enumerating all possible actions
may not be tractable. Therefore, we need a scheme to evaluate the
gradient as follows, which is parallel to the derivation process of the
natural evolution strategy using the log-trick [20, 21].

∇θE [rs (a)|θ] = ∇θ
∑
a

Pf (a|s) rs (a)

=
∑
a

Pf (a|s)
(
∇θPf (a|s)
Pf (a|s)

)
rs (a)

= E [rs (a)∇θ logPf (a|s)] . (1)

Equation (1) means that rs (a)∇θ logPf (a|s) is an unbiased es-
timator of the gradient ∇θE [rs (a)|θ]. Given the estimate of the
gradient, the parameter update formula is obtained as follows.

θ̂ = θ + εrs (a)∇θ logPf (a|s) , (2)

where ε (> 0) is the learning rate. The same formulation holds when
the reward is a conditional probability of r given a.

4. PROPOSED METHOD

We assume a situation where an ASR system is used to serve a vast
number of general users over the Internet. The users input speech
data that they want to transcribe. Such data would include record-
ings of school lectures, invited talks, presentations, and meetings.
More interactive applications, such as voice input for email, can also
be the target. The users want a reasonably good transcript quickly
and easily, and they do not have time to correct all the recognition
errors word by word. The user interface is equipped with a mecha-
nism that allows the users to provide a scalar evaluation score for the
recognition result as user feedback. There are several design choices
about what types of scores we expect the users to provide intention-
ally or unintentionally, but we assume that it is given in an utterance
basis.

To formulate a reinforcement learning framework for statistical
ASR systems, we regard the whole system as a policy function that
takes a feature sequence of an utterance as the input s and returns a
probability distribution of a word sequence l of recognition hypoth-
esis as an action. In particular, when the recognition system is based
on an acoustic model PAM (s|l) and a language model PLM (l), the
(unnormalized) probability distribution is given by Equation (3).

P (l| s) = PAM (s|l)PLM (l)

P (s)
∝ PAM (s|l)PLM (l) . (3)

If we further assume that we only want to update the acoustic model
and it is a DNN-HMM, and we only want to update the DNN param-
eters θ to better predict the posterior probability of HMM states, then
the gradient in Equation (2) becomes independent of the language
model. Moreover, it is further decomposed to each time frame, and
becomes:

rs (l)
∂ logPAM (lt|st)

∂θ
, (4)

where st is an acoustic feature vector at time frame t, and lt is the
HMM state aligned to that frame. Equation (4) indicates that the
update formula for the reinforcement learning of DNN-HMM using
the policy gradient method is simply a reward weighted version of
normal cross-entropy based back-propagation. The update formula
satisfies the criterion of the REINFORCE algorithm having the form
shown in Equation (5) [22],

(r − b) ∂ log g(i)
∂θ

, (5)

where r is the reward, b is the reinforcement baseline, g is the prob-
ability function over the item i, and θ is the parameters of the neural
network.

If we use CM as reward and round it to a binary value of 1.0
and 0.0, we can now clearly state that the conventional unsupervised
adaptation with the hypothesis rejection mechanism mentioned in
Section 2 is an example of the policy gradient-based reinforcement
learning if the hypothesis is obtained by the sampling.

To utilize human feedback, the most direct measure of the recog-
nition performance is the word accuracy. However, asking gen-
eral users to evaluate word accuracy would not be realistic. Even
for users with a technical background in ASR, it is time consum-
ing to calculate. To avoid this problem, we propose a hypothesis
selection-based reinforcement learning method in which we prepare
two recognition systems. One system is the subject for the reinforce-
ment learning, and the other is used as a rival. For each input utter-
ance, a recognition hypothesis is sampled from each of the systems,
and both of them are presented to the user. Then, the user selects the
better hypothesis among them. In this case, the selection itself is the
feedback to the system: 1 is the feedback when the hypothesis of the
first system is selected, and 0 is the feedback otherwise. Based on
the binary reward r, we update the DNN using the weighted gradient
defined in Equation (6).

(1 + α)

(
r − α

1 + α

)
∂ logPAM (lt|st)

∂θ
, (6)

where α (0 ≤ α ≤ 1) is a scalar constant. The coefficient (1 + α)
is constant and can be seen as a part of the learning rate. Choos-
ing α = 0 corresponds to updating the parameters only when the
hypothesis is selected.

5. IMPLEMENTATION WITH APPROXIMATIONS

To implement the proposed hypothesis selection-based reinforce-
ment learning, we made some approximations in our experiments.
First, we used a Viterbi decoding as in normal ASR systems to find
the best hypothesis rather than sampling a hypothesis from the pos-
terior distribution. Second, instead of preparing a separate rival sys-
tem, we used the n-th best hypothesis (1 < n) of the same system as
the rival hypothesis, where n is a constant. We refer to the best hy-
pothesis as the Candidate 1 hypothesis (l(1)) and the rival hypothesis
as the Candidate 2 hypothesis (l(2)). Since both of the hypotheses
come from the same model, we used both of them in a symmetric
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Table 1. CSJ data used for the experiments.

Training set labeled 10 hours
unlabeled 50 + 50 + 50 + 50 hours

Evaluation set 2 hours
Vocabulary size 72k words

Hypothesis 1
Hypothesis 2

: Decoding

: Training

Initial 
model

Hypothesis 1
Hypothesis 2

Hypothesis 1
Hypothesis 2

Hypothesis 1
Hypothesis 2

Unlabeled 
batch 1

Unlabeled 
batch 2

Unlabeled 
batch 3

Unlabeled 
batch 4

Labeled 
data

Supervised 
learning

RL1 RL2 RL3

Stage 0 Stage 1 Stage 2 Stage 3

Fig. 1. Reinforcement learning process. RLk indicates a model
made by applying reinforcement learning k times. RLk is made at
stage k and used to decode large batch #k+1

manner in the gradient update as shown in Equation (7).

(1 + α)

(
r − α

1 + α

) ∂ logPAM

(
l
(1)
t |st

)
∂θ

+ (1 + α)

(
(−r)− −1

1 + α

) ∂ logPAM

(
l
(2)
t |st

)
∂θ

. (7)

This corresponds to collecting two feedbacks for two actions at the
same time. For example, assuming α = 0, we compute the gradient
using the Candidate 1 hypothesis when it is selected (i.e. α = 1)
with weight 1, and we use the Candidate 2 hypothesis with weight 1
otherwise. Third, the parameter update by the reinforcement learn-
ing was performed based on large batches rather than an utterance
by utterance update. This is mainly for the purpose of quick imple-
mentation.

For a more rigorous implementation of the sampling from the
unnormalized posterior, beam sampling could be used [23]. Another
strategy of preparing a rival system would be to use the same sys-
tem from a randomly selected previous stage of update, as in Al-
phaGo [24]. By rewriting, Equation (7) becomes Equation (8). In
this form, it can be seen that the hypothesis selection method is sim-
ilar to discriminative training [25] in that it tries to increase the dif-
ference of the likelihood of the selected hypothesis (corresponding
to correct the hypothesis) and the other hypothesis (the denominator
lattice). However, the selected hypothesis is not a reference and usu-
ally contains errors, and it is within the formulation of the expected
reward.

∂ logPAM

(
l
(1)
t |st

)
∂θ

− α
∂ logPAM

(
l
(2)
t |st

)
∂θ

(r = 1)
∂ logPAM

(
l
(2)
t |st

)
∂θ

− α
∂ logPAM

(
l
(1)
t |st

)
∂θ

(r = 0).

(8)

6. EXPERIMENTAL SETUP

We performed the experiments using data from the Corpus of Spon-
taneous Japanese (CSJ) [26], and based on the CSJ recipe1 in the
Kaldi speech recognition toolkit [27]. In our experiments, we made
two subsets from the original CSJ training data. The first subset con-
tained 10 hours of data, and it was used as a labeled training set

1https://github.com/kaldi-asr/kaldi/tree/master/egs/csj
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Fig. 2. Number of stages and WERs of the large batch data. At
stage k, the RLk model is used to decode large batch #k+1. When
supervised training was performed, the WER at stage 3 was 19.3%.
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RL : α=0.3
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Fig. 3. Number of stages and WERs of the evaluation set.

to train an initial baseline system. The other subset had 200 hours
in total, and it was further divided into four subsets, each of which
contained 50 hours of data. These four subsets were used as the unla-
beled large batches for the reinforcement learning assuming the cor-
responding transcripts were not given to the system. Additionally,
the standard evaluation set of CSJ, including two hours of speech
data was used to evaluate the updated models using the same data
set. Table 1 summarizes these data sets. The feedback from the
users was simulated by evaluating the word error rates (WER) of
the hypotheses from the system using the reference labels, and then
performing the hypothesis selection based on the true WER. To sim-
ulate selection errors caused by users, experiments that introduced
random swapping of the selected and unselected hypotheses were
performed.

The input acoustic features for the DNN were 40 dimensional
fMLLR features. The fMLLR features were computed using lattices,
where the lattices were made by forced aligning the true labels for
the training set, and by decoding the speech data for the large batches
and for the evaluation set. The size of the input layer of the DNN
was 1400 (spliced by +/- 17 frames). The DNNs had 6 hidden layers
with a sigmoid activation function. They had 1905 units per hidden
layer and 812 units for the output softmax layer.

The DNN-HMM of the baseline system was trained by pre-
training and fine-tuning using the 10-hour labeled training data. For
the large batch based reinforcement learning, the initial learning
rates for the batches were set to 0.004, 0.002, 0.001 and 0.0005
for stages 1, 2, 3, and 4, respectively. The 10-hour labeled training
data was always used by mixing it with the unlabeled large batches.
The learning rate controls for the training data set and for the large
batches were based on cross-validation using 10% of the labeled
trained data as the held out set. The learning rate was halved when
the improvement in cross-entropy on a cross-validation set fell be-
low 1% in an epoch. The upper limit of the number of iterations in
each epoch was set to 7.

Figure 1 shows the outline of the reinforcement learning process.
The unlabeled large batch #1 was decoded using the initial baseline
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24.3

24.8

25.3

25.8

Stage 0 Stage 1 Stage 2 Stage 3

W
ER

 [
%

]

Number of stages

initial model
unsupervised adaptation
unsupervised adaptation(CM)
RL : α=0
RL : α=0.5

Fig. 5. Number of stages and WERs of the large batches when there
is 15% hypotheses selection error.

DNN-HMM model. The Candidate 1 hypotheses were the best re-
sults in the N-best list, and the Candidate 2 hypotheses were either
10th or fifth results in the list. The N-best list was created from a
decoded lattice. After the first updated model (RL1) was made us-
ing large batch #1, it was used to recognize large batch #2. Based
on the recognition results, the model was updated, making the next
model (RL2). This process was repeated for all the large batches.
For comparison purposes, unsupervised adaptation was performed,
where the model was updated using the Candidate 1 hypothesis with
and without the CM based hypothesis rejection. We used the aver-
aged word posterior as CM obtained from a confusion network [28],
and set the rejection threshold to keep 75% of the hypotheses based
on a preliminary experiment.

7. RESULTS

Figure 2 shows the WER of the successively updated models based
on unsupervised adaptation and reinforcement learning using the
large batches sequentially. At stage 0, the initial baseline model
is used to decode large batch #1. The hypothesis selection is per-
formed for the model update, and the WERs are evaluated based
on all the 1-best result. Therefore, differences of the WERs arise
from Stage 1. In the figure, “initial model” indicates the WERs of
the large batches using the baseline initial model. The unsupervised
adaptations gave better results than the non-updated initial model.
A slight improvement was obtained by using the confidence based
hypothesis rejection compared to using all the hypotheses. As the
lower-bound of the WER based on supervised adaptation using man-
ual transcripts, 19.3% was obtained at state 3. For the reinforcement
learning, 10th-best results were used as the Candidate 2 hypothe-
ses. By using reinforcement learning, a larger improvement than the
unsupervised adaptations was obtained when the coefficient α was
chosen from 0.0 to 0.5. Choosing α greater than 0 means both of
the hypotheses were used. The lowest WER was obtained when α
was 0.5. When α was larger than 0.5, the second hypothesis affected
the gradient too much and WER greatly increased. At stage 3, WER
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unsupervised adaptation
unsupervised adaptation(CM)
RL : 5-best, α=0.5
RL : 10-best, α=0.5

Fig. 6. Number of stages and WERs of the large batches when the
5th and 10th best hypotheses were used as the Candidate 2 results.
15% selection error rate is simulated.

slightly increased except when α = 0.5, including the unsupervised
adaptation. This was partly because our learning rate reducing strat-
egy was not optimal, and partly because the fourth batch simply con-
tained relatively difficult utterances to recognize, as it is seen that the
WER using the initial model was also higher compared to the other
large batches.

To evaluate the updated models using the same data set, Figure
3 shows WERs of the common evaluation set. The WER by the
initial baseline model was 26.4%, and the unsupervised adaptation
gave 0.4% absolute improvement at the 4th stage when no CM was
used and 0.6% when CM was used. Consistent improvement was
observed by the reinforcement learning with α = 0.5, and it gave
the lowest WER of 25.5% at the 4th stage.

Figure 4 shows the simulated results of the relation between the
selection error rate by the users and the WERs of the selected hy-
potheses. When the selection error rate is equal to or lower than
20%, we can expect lower WER in the selected hypotheses than the
Candidate 1 hypotheses. Based on this analysis, we next investigated
the performance of the reinforcement learning when there were 15%
errors in the hypotheses selection. Figure 5 shows the WERs. The
WER of stage 0 is the same as that of the Figure 2. It is confirmed
that the reinforcement learning with α = 0.5 still outperformed the
unsupervised adaptation. At the 3rd stage, a slight increase in WER
was observed both for the unsupervised adaptation and the reinforce-
ment learning due to the same reason as before.

Finally, we have evaluated the performance of the reinforcement
learning when the 5th-best results were used as the Candidate 2 hy-
potheses instead of the 10th-best results. Figure 6 shows the WERs
with 15% selection errors. For reinforcement learning, α was set to
0.5. While the improvement became small, reinforcement learning
still gave better results than the unsupervised adaptation.

8. CONCLUSION

In this paper, we have proposed a policy gradient-based reinforce-
ment learning framework for ASR systems, and also have proposed
a hypothesis selecting-based reinforcement learning method as a
particular instance of the framework. In the experiments, we have
shown that the proposed method reduces WER compared to the
unsupervised adaptations. The tendencies were the same when 15%
of simulated noise in the hypothesis selection was introduced, while
the improvement became slightly smaller. When the number of
stages was increased, there was a tendency for the WER to increase
in both the unsupervised adaptation and the reinforcement learning
in several cases. Future work includes addressing the problem of
overtraining by adjusting the strategy for the learning rate and the
number of iterations in each stage, and improving the performance
by investigating more effective ways to update the model.
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