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ABSTRACT

The automatic annotation of Mandarin monosyllabic au-
dio word tokens remains an important yet challenging issue
in phonetics research. In this work, we address this annota-
tion task via a novel subcategories-classification framework
that not only performs word identification via the joint classi-
fications of vowel and tone subcategories, but also performs
gender discrimination of the speaker, which stands in contrast
to previously proposed methods for Mandarin speech that fo-
cused only on tone-, vowel-, or gender- classification. We
also propose a novel hierarchical classification algorithm to
boost overall classification performance. Extensive experi-
mental results show that our approach yielded superior per-
formance in both cases of adequate and very limited train-
ing data. When trained using data from only one female and
one male speaker, our approach also yielded the best classi-
fication accuracy in all subcategories of the token annotation
problem, achieving an F1-score of 0.742 as opposed to 0.705
as achieved by the second competing approach.

Index Terms— monosyllabic Mandarin tokens, phonet-
ics, hierarchical classification, label fusion, multi-class SVMs

1. INTRODUCTION

The automatic annotation (AA) of monosyllabic word tokens
extracted from audio recordings is a fundamental yet critical
step even in the current modern era due to the needs cast by
phonetic studies [1, 2], clinical therapy designs, and treatment
evaluations for speech and hearing impairment [3].

In this work, we aim to annotate segmented audio tokens
of Mandarin words for a series of prospective Mandarin tone
studies being conducted at SFU and KU [4, 5]. In particular,
given an extracted audio token of a Mandarin word articulated
by a speaker, our goal is to assign to this token a set of anno-
tations, namely: vowel, tone, and gender. These annotations
are then used to facilitate subsequent intelligibility tests and
group analyses of the differences in the acoustic features of
individual words for the aforementioned prospective studies.

Our goal is challenging to achieve for several reasons.
Firstly, unlike the common continuous-speech-based auto-
matic speech recognition, the annotation of monosyllabic
words is challenging by the lack of contextual information.

In particular, the discrimination of certain words in isola-
tion is difficult even for human raters based on our rater
perception data (see Section 2), mostly due to the challenge
of discriminating the Mandarin rising tone from the dipping
tone. Secondly, inter-speaker variability observed in our
dataset is high because of the two speaking styles involved in
this work such that one single word could be produced in a
hyper-articulated, clear speech manner that is different from
a conversational, plain speaking style. Thirdly, the number
of word categories and the total dataset is generally limited,
as compared to data from continuous speech studies. Hence,
when limited training data is available (which is the case for
small-scale analyses of hand-selected monosyllabic Mandarin
speech tokens), and when pretrained models are not available
for transfer learning, methods based on deep-learning (e.g.
those based on convolutional neural networks (CNN) [6, 7])
may not be suitable, as our experimental results suggest.

To circumvent these challenges, we propose a new for-
mulation of AA as the joint classifications of three subcat-
egories, namely: i) identification of each token as one of 3
vowel classes, ii) identification of each token as one of 4
tone classes; and iii) identification of the speaker’s gender.
To the best of our knowledge, this formulation has not been
proposed in the literature before (Table 1). By framing an-
notation as the labelings of 3 subcategories, we can engineer
our framework by following the Mandarin phonetic model
as closely as possible. Additionally, we propose a novel
hierarchical classification algorithm using support vector ma-
chine (SVM) that would allow us to employ gender-specific
vowel classifications and vowel-specific tone classifications.
By formulating the classification subproblems hierarchically,
we leverage domain-specific knowledge to custom-design
feature-classifier combinations to further improve classifica-
tion performance, as our experimental results show.

2. MATERIALS

For the purpose of answering specific research objectives set
in [4, 5], the speech tokens were carefully chosen to form a
dictionary of 12 Mandarin words, each of which belongs to
one of 3 vowel classes (/3/, /i/ and /u/), and belongs to one of
4 tones classes (Tone 1: level; Tone 2: rising; Tone 3: dipping;
Tone 4: falling). Furthermore, the production of each token
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Table 1: Relation to prior work for AA of Mandarin monosyllabic
speech tokens.
‘V’, ‘T’, and ‘G’ respectively denotes whether each paper addressed
classification(s) of vowel, tone, and gender; S, T , k respectively
denotes the size of the training set, size of the test set, number of
classes handled; M and F denote male and female.
Ref.V T G Classifier employed S T k
[8] 7 3 7 Logistic regression, SVM

with RBF, NN
7549 300 6 tones

[9] 3 7 7 SVM with RBF, DNN 18 sentences
(1M, 1F)

NA 2

[10]7 3 7 3-layer neural network
(NN)

6000 (8M,
8F)

750 4 tones

[11]7 3 7 Deep neural network
(DNN)

7549 300 5 tones

[7] 7 3 7 CNN 50 utterances
from 1M, 1F

1 utterance
from 40
subjects

≈40

[12]7 3 7 Multi-feed-forward NN 1539 670 4 tones
[13]7 3 7 SVM with radial basis

function (RBF) kernel
10080 10080 4 tones

[14]3 7 7 SVM with linear, 3rd order
Polynomial and RBF

1176 391 5 vow-
els

[15]7 7 3 SVM (choice of kernel not
mentioned)

70 240 6+3
age
groups

[16]7 7 3 Logistic Regression, Ran-
dom Forest, AdaBoost

3616 452 2 gen-
der

Table 2: Feature sets we employed for each subcategory.
Feature id Description

Gender [14]
G1-G2 Absolute and relative jitter
G3-G6 Mean, standard deviation, mode and median of Funda-

mental Frequency (F0)
G7-G8 Minimum and maximum value of pitch contour over time
G9 Inter-quartile range of F0
G10-G12 Coefficients of second order fitted polynomial on the es-

timated pitch contour (p)
G13-G14 Positions of the minima and maxima on p
G15 Ratio of F0 to F1

Tones [17]
T1-T3 Coefficients of second order polynomial function fitted on

the estimated pitch contour
T4-T5 Relative positions of minima and maxima on p
T6-T10 Slopes of p
T11-T14 (amax-bmin), (cmax-bmin), (cmax-amin), (amax-cmax),

where a and c is respectively the first and fourth quar-
tile; b is the union of the second and third quartiles; and
the min-subscript (max-subscript) denotes the minimum
(maximum) value in that quartile.

Vowels [14]
V1-V16 Mean of Mel-frequency cepstrum coefficients (MFCCs)

over different frames
V17-V19 Median of the F0, F1, F2 frequencies over time

was recorded in isolation (as opposed to continuous speech),
and articulated in two speech styles: conversational and clear.

The recruited n=21 speakers consist of 9 males and 12
females who were born and raised in Northern China or Tai-
wan at least during the first 18 years of their lives. During
recording, each speaker articulated each word token at least
10 times in a random order, each articulated in one speech
style. In total, 2948 utterances were recorded and were man-
ually annotated by two other native Mandarin speakers. As
noted in Section 1, the perception of several tokens with sim-

ilar tones (e.g. /32/ vs. /33/; /u2/ vs. /u3/) is challenging. As
our experiment on inter-rater variability shows, the disagree-
ment in the 12-word classification sub-problem can be as high
as 17%. Therefore, to ensure the quality of the labels, tokens
whose annotation labels disagree were excluded.

3. METHODS

3.1 Feature extraction of speech tokens
Pre-processing: Following standard procedure [18], the

mono-channel data is first resampled to 16,000 Hz. Next, the
voiced component from the audio signal is separated from
background noises by applying a threshold operation on the
short-time energy curve [18] of the audio signal. The thresh-
old value was empirically set as 0.05.

Estimating pitch contours: To extract pitch-contours re-
liably, we integrated two standard approaches (auto-correlation
and cepstrum-based) as follows. First, each of the pitch con-
tours generated from these two approaches is median-filtered
to remove sudden changes in the pitch estimation over time.
Then, the two smoothed contours are analyzed frame-by-
frame to obtain the final pitch value p(i). We do so by mea-
suring the similarity of the pitch values at each time frame
between the two contours. When the measured similarity is
high, we compute p(i) as the average of the two pitch values.
When the similarity is below an empirically tuned threshold,
p(i) is set as p(i-1), i.e. the value estimated from the previous
frame is used. Lastly, if a pitch value of either approaches is
missing as it cannot be estimated due to the common “creaki-
ness” problem [19], linear interpolation is employed whereby
p(i) is computed from the two nearest temporal frames where
the pitch values are available.

Feature extraction: based on the literature, we extracted
a standard set of features for each of the subcategories as
listed in Table 2. For MFCC-based features, quantile-based
cepstral normalization [20] was used. Lastly, all features are
normalized so that they have zero mean and unit variance.

3.2 Hierarchical subcategory-classifiers
We propose a novel hierarchical classification algorithm

to tackle our 3-subcategory classification in a joint, integrated
framework. Our pipeline (Fig. 1) is motivated by the observa-
tion that the defined features of tones and vowels are interde-
pendent. In particular, the length and/or shape of a tone con-
tour may vary depending on its vowel context. For instance,
the length of the contour for vowel /3/ tends to be shorter than
that for /u/, presumably due to the addition of an initial glide
/u/. We thus employ an ensemble of hierarchical classifiers to
model these inter-dependencies.

Our proposed classification algorithm is shown in Fig. 1.
At the top level, three generic classifiers (one for each of the
vowel, tone and gender subcategories) are trained using the
input training token samples. For each of these classifiers,
features specifically developed for each subcategory are ex-
tracted from each word token according to Table 2.
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In addition to these three generic classifiers, we also con-
struct a second layer of hierarchical classifiers that consist of
three more sets of subcategory-specific classifiers: 1) gender-
specific vowel classifiers, 2) gender-specific tone classifiers,
and 3) vowel-specific tone classifiers.

In training these subcategory-specific classifiers, the train-
ing audio tokens are then split into different subgroups.
Specifically, to train a gender-specific vowel classifier, the
training tokens are split by gender, and a vowel classifier
is then trained on the male speech tokens only to form a
male-specific vowel classifier, and similarly, another vowel
classifier is trained on the female tokens to yield a female-
specific vowel classifier. Under this strategy, the variations
in the vowel features due to gender differences can be min-
imized and these second-level classifiers will be trained to
learn gender-specific class boundaries that may better dif-
ferentiate between vowel classes within each gender than
those learned by the generic vowel classifier. Likewise, we
also build another set of tone classifiers for each of the gen-
der groups. Lastly, to model inter-dependencies between
tone-vowel combinations, we also construct a third level of
vowel-specific tone classifiers.

Once training is done, testing is done in a cascaded man-
ner where class predictions from all classifiers of all levels
are computed. However, predictions from the lower levels are
chosen based on the top level. In particular, given a test audio
token to be annotated, the gender classifier at the first level
is used to predict its gender class. If the predicted gender is
male, then only the class predictions computed by the male-
specific classifiers are employed to make a prediction for its
tone and vowel subcategories.

When all levels of relevant classifiers have made their
predictions, three sets of subcategory-specific predictions are
available. More specifically, for tone prediction, intermedi-
ate predictions are obtained from the gender-specific tone and
vowel-specific tone classifiers. In the ideal case where the test
token falls in the same distribution as the training tokens that
were used to train a generic tone classifier, the prediction of
this generic tone classifier can be entirely trusted. However,
since it is unlikely that a highly discriminate feature set and a
single classifier can produce a highly accurate prediction, we
boost its performance by fusing its labels with those acquired
from the subcategory-specific classifiers. The final annota-
tion label for the tone subcategory is therefore decided by a
majority vote on the predictions made by these three indepen-
dent classifiers, i.e. the generic tone classifier, gender-specific
tone classifier, and vowel-specific tone classifier. Similarly,
we also have two different label predictions from the two lev-
els of vowel classifiers, i.e. the generic vowel classifier and
gender-specific vowel classifier. The final vowel label of the
test token is thus decided based on a weighted majority voting
of these two classifiers, where the weight was set empirically
as w=0.6 to weigh the vowel-specific tone classifier more.

Lastly, the final label for each test token is determined

Fig. 1: Our proposed hierarchical classification algorithm.

from the predicted gender, vowel, and tone class labels.

4. EXPERIMENTAL RESULTS & DISCUSSION

In this work, each subcategory for tone, gender and vowel is
considered a separate class, thus giving k=24 classes in to-
tal. We measure performance using accuracy (ACC) and F1-
score (the harmonic mean of precision and recall), but prefer
F1-score over ACC [21]. For evaluation, we benchmark the
proposed classification framework against those used in pre-
vious works1:
1. Single multi-class SVM: We trained a single 24-class (and

12-class) SVM that employs all features in Table 2.
2. Single multi-class NN: We repeated #1 using the 3-layer

neural network (NN) described in [10].
3. Three independent SVMs: We trained 3 SVMs indepen-

dently for each subcategory, each using its own category of
features. The independently predicted gender, vowel and
tone classes are then used to determine the final labels.

4. Three independent NNs: we repeated #3 with NN ([10]).
5. CNN: We implemented a recent2 method [7] based on

deep-learning and tested it with various settings of hyper-
parameters. Results from the best setting are used.

We performed separate sets of cross-validation experiments
(CVE) to examine the following questions. Firstly, to ex-
amine classification performance under situations where the
size of the training set is roughly equal to or larger than that
of the test set, we ran t folds such that token samples from
only m speakers were used for classification-training while

1We chose RBF kernel for SVM to facilitate direct comparisons with re-
lated works for Mandarin speech [14] and those for English [22].

2Su et al. [7] was designed for pitch determination for a dataset of similar
size to ours. We chose this work for comparison over the CNN approach of
Qian et al. [23] because the latter required a dataset of over 7000 utterances.
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the remaining n-m speakers were used for testing. We set
m={10, 15} so that the training data is roughly 50% and
75% of the entire dataset, respectively. The top halves of
Tables 3-4 report the results. Shown in each cell are ACC
and F1-score obtained by each method for different subcate-
gories and for the overall annotation task. In these tables, we
highlight the best performance in blue (cells in pink will be
discussed shortly). From these tables, one can see that our
proposed algorithm generally achieved the best performance
based on both ACC and F1-score, regardless of the subcate-
gory. In contrast, the approach based on CNN [7] performed
worse, mostly due to insufficient number of training samples
in relation to the number of model parameters employed (e.g.
for k=24, ≈92 training samples per class for m=15, and ≈61
per class for m=10). Strategies like data augmentation may
mitigate the well known high-dimensionality-low-sample-
size problem. Conversely, simpler models like SVM and
NN yielded better performance than CNN [7], most likely
because fewer model parameters were employed. Lastly, in-
dependent classifiers generally performed better than single
classifiers, suggesting that the use of category-specific fea-
tures for each subcategory allowed the individual classifiers
to learn class-boundaries within each subcategory better than
those for word-level classifications.

Secondly, in pushing the limit of training classification al-
gorithms with small training data, we employed token sam-
ples from only 2 randomly selected speakers for training such
that each fold has 1 male and 1 female. Thus, each class had
≈23 training samples when k=12, and ≈11 training samples
when k=24. We then employed all the samples from the rest
of the speakers for testing. We repeated this procedure until
all possible combinations of one-speaker-per-gender pairings
were examined. From Table 5, one can see that our method
maintains the top performance. The achieved F1-score is also
significantly higher than that achieved by the competing ap-
proach of using independent SVMs, with F1-score for the
overall 24-class problem of 0.742 (vs. 0.705).

The last set of CVEs examined how increasing the prob-
lem dimensionality to include the annotation of gender may
(not) decrease the word-level classification accuracy. We
done so by repeating the above CVEs but omitting gender-
classification (k=12). Results of these CVEs are shown in
the lower halves of Tables 3-5 where we highlighted the cells
with highest F1-score for this 12-class problem in pink. Inter-
estingly, the inclusion of gender subcategory has no negative
impact on classification performance in all cases. Further-
more, when training data is limited, as in the case of m=2,
our approach achieved a significant improvement of 2.8%
(F1-score of +0.04) for vowel- classification over the second
competing method (3 SVMs), as highlighted in pink in Table
5. In contrast, accuracy of CNN [7] was sub-optimal, with a
significant drop in F1-score from 0.810 to 0.661 for vowel-
annotation and from 0.679 to 0.451 for tone-annotation for
the case of m=10, and likewise for the case of m=2.

Table 3: 4-Fold CV: training data from m=15 speakers.
Shown in each cell are accuracies (ACC/F1-score) obtained by
each approach for different subcategories and for the overall an-
notation task. For each subproblem, the cell with the highest
F1-score is highlighted in blue (k=24) or pink (k=12).

Approach Vowel Tone Gender Overall
24-class

CNN [7] 89.2/0.844 88.1/0.763 85.2/0.813 96.2/0.593
3 SVMs 98.1/0.973 95.9/0.919 97.7/0.972 99.0/0.880
Single SVM 95.5/0.935 95.0/0.900 96.9/0.965 98.6/0.835
3 NNs 97.1/0.957 95.4/0.907 97.7/0.972 98.8/0.857
Single NN 95.7/0.937 94.6/0.892 97.2/0.968 98.6/0.837
Proposed method 98.7/0.981 96.2/0.923 97.7/0.972 99.1/0.892

12-class
CNN [7] 91.1/0.861 90.3/0.814 NA NA
3 SVMs 98.1/0.973 95.9/0.919 NA NA
Single SVM 96.7/0.951 95.4/0.909 NA NA
3 NNs 96.4/0.946 95.1/0.902 NA NA
Single NN 95.9/0.939 95.0/0.899 NA NA

Table 4: 2-Fold CV: training data from m=10 speakers.
Approach Vowel Tone Gender Overall

24-class
CNN [7] 85.7/0.795 78.5/0.576 63.0/0.662 94.1/0.368
3 SVMs 96.0/0.941 94.8/0.898 97.5/0.967 98.6/0.850
Single SVM 91.5/0.875 92.8/0.860 94.3/0.923 97.7/0.735
3 NNs 94.2/0.914 94.3/0.886 97.5/0.967 98.3/0.819
Single NN 91.5/0.875 90.8/0.827 95.5/0.933 97.5/0.733
Proposed method 96.3/0.946 95.1/0.902 97.5/0.967 98.7/0.858

12-class
CNN [7] 86.9/0.810 83.5/0.679 NA NA
3 SVMs 96.0/0.941 94.8/0.898 NA NA
Single SVM 93.4/0.905 93.7/0.878 NA NA
3 NNs 94.5/0.920 94.3/0.887 NA NA
Single NN 91.9/0.881 92.2/0.849 NA NA

Table 5: 8-Fold CV: training data from m=2 speakers.
Approach Vowel Tone Gender Overall

24-class
CNN [7] 73.2/0.611 71.3/0.431 59.2/0.614 93.2/0.163
3 SVMs 89.9/0.856 92.9/0.858 94.7/0.939 97.5/0.705
Single SVM 83.4/0.758 86.3/0.733 83.3/0.794 95.7/0.510
3 NNs 86.3/0.805 91.4/0.831 94.7/0.939 96.9/0.644
Single NN 81.9/0.732 84.4/0.691 80.6/0.778 95.4/0.459
Proposed method 92.7/0.896 93.1/0.864 94.7/0.939 97.8/0.742

12-class
CNN [7] 76.4/0.661 72.2/0.451 NA NA
3 SVMs 89.9/0.856 92.9/0.858 NA NA
Single SVM 85.0/0.783 89.2/0.786 NA NA
3 NNs 88.5/0.833 91.7/0.839 NA NA
Single NN 85.0/0.782 88.1/0.763 NA NA

5. CONCLUSION
We presented a new hierarchical formulation of AA for Man-
darin monosyllabic speech tokens via joint gender-, vowel-,
and tone- classification that was shown to better model the
inter-dependencies between 3 subcategories than other vari-
ants tested. As results show, our approach is advantageous as
it did not compromise classification performance even when
the complexity of the problem increased while being able to
provide additional (gender) information in the annotations.
In future, we aim to investigate additional subcategories to
our framework, such as more vowels, data sizes and different
speech styles, to further aid our target application.
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