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ABSTRACT

This paper presents unsupervised multichannel speech enhancement
for noisy speech recognition. Time-frequency (TF) mask estimation
has actively been studied for estimating the steering vectors and spa-
tial covariance matrices of speech and noise used for beamforming.
The state-of-the-art approach to mask estimation is to use deep neu-
ral networks (DNNs) for classifying the TF bins of observed signals
into speech and noise. Such a supervised approach, however, does
not work well in an unknown environment. To accurately estimate
the spatial covariance matrices in an unsupervised manner, we per-
form blind source separation (BSS) based on multichannel nonneg-
ative matrix factorization (MNMF) for decomposing each TF bin
into the components of speech and the other sources (noise). To
clarify a suitable type of beamforming for MNMF, we tested both
time-invariant and time-varying versions of the minimum variance
distortionless response (MVDR) beamforming in addition to stan-
dard multichannel Wiener filtering (MWF). The experimental results
showed that our MNMF-based beamforming approach outperformed
the state-of-the-art DNN-based beamforming method in unknown
environments that do not match the training data.

Index Terms— Noisy speech recognition, speech enhancement,
multichannel nonnegative matrix factorization, beamforming

1. INTRODUCTION

Multichannel speech enhancement based on beamforming has inten-
sively been studied for automatic speech recognition (ASR) in real
environments. Using beamforming techniques, we can emphasize
target speech coming from one direction and suppress noise coming
from the other directions [1]. Recent competitions such as CHiME
Challenge [2] showed the effectiveness of beamforming as prepro-
cessing for ASR in adverse noisy conditions [3]. There are several
variants of beamforming methods such as minimum variance distor-
tionless response (MVDR) beamforming [1], generalized sidelobe
canceller (GSC) [4], multichannel Wiener filtering (MWF) [5], and
generalized eigenvalue (GEV) beamforming [6]. To use these meth-
ods formulated in the time-frequency (TF) domain, it is necessary
to calculate linear filters based on the steering vectors and spatial
covariance matrices of speech and noise [7–12].

A great deal of effort has been devoted to estimating the steering
vectors and spatial covariance matrices corresponding to speech
and noise. Conventional methods based on steered response power
phase transform (SRP-PHAT) [13] and weighted delay-and-sum
beamforming [14] are insufficient for ASR in real environments [2].
Recently, TF masking has been shown to improve the performance
of ASR [7–12]. This approach is based on the assumption that each

Fig. 1. The proposed approach to unsupervised speech enhancement
based on a variant of beamforming that calculates the spatial covari-
ance matrices of speech and noise from the corresponding spectro-
grams obtained by MNMF.

bin of an observed spectrogram is exclusively classified into two
categories (i.e., speech and noise) [7–12]. The spatial covariance
matrices of the target speech and noise can be calculated from the
classified TF bins [7–12]. The steering vector of the target speech is
then obtained by calculating the principal component of the spatial
covariance matrix [7–9]. One approach to such binary classifica-
tion is to use an unsupervised method based on complex Gaussian
mixture models (CGMMs) [7]. In recent years, the most popular
method is to use deep neural networks (DNNs) for estimating TF
masks without using phase information [8–12]. To train DNNs
in a supervised manner, however, sufficiently many pairs of noisy
spectrograms and ideal binary masks (IBMs) are required.

One of the problems of the conventional mask estimation is that
the phase information of each source is not adequately dealt with al-
though the phase information plays an essential role in various kinds
of multichannel audio signal processing. Another major problem
of the DNN-based mask estimation is that the performance of ASR
in unknown environments that are not covered by the training data
would be considerably degraded because DNNs easily overfit to the
training data. Several studies related to CHiME Challenge [15] sug-
gested that multi-condition DNN training with various kinds of noise
data mitigate the problem, but it is still an open question whether it
is robust even when a microphone array with different frequency
characteristics is used in unseen noisy environments. This calls for
an unsupervised method that can estimate the phase of speech and
noise.

In this paper we propose several variants of unsupervised speech
enhancement that estimate both the spatial covariance matrices of
speech and noise for beamforming by using a blind source separation
(BSS) method called multichannel nonnegative matrix factorization
(MNMF) [16–18] (Fig. 1). Given complex spectrograms of multi-
channel mixture signal, MNMF can estimate the spatial covariance
matrices of individual sources as well as approximating the power
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Table 1. Relationship between MVDR and MWF.

Estimation method

Propagation process Speech |rank-1
Noise |full-rank

Speech |full-rank
Noise |full-rank

Maximum Likelihood MVDR -
Estimation in Eqs. (3) & (4) -

Maximum A Posteriori Rank-1 MWF Full-rank MWF
Estimation in Eqs. (5) & (6) in Eqs. (8) & (9)

spectrogram of each source as the product of a basis matrix (a set
of basis spectra) and an activation matrix (a set of temporal acti-
vations) as in nonnegative matrix factorization (NMF). Since each
TF bin is decomposed into a sum of all sources (e.g., speech and
noise) with phase information, more accurate spatial covariance ma-
trices can be obtained than DNN- or GMM-based mask estimation
methods [7–12] that directly calculate the spatial covariance matrix
of speech from noisy TF bins without any decomposition. The pro-
posed unsupervised speech enhancement is expected to work even in
environments where there are no matched training data. Since there
are only a few studies of speech enhancement based on BSS [19–21],
we further investigate integration of MNMF [16] and various types
of beamforming in a wide variety of conditions. More specifically,
we test time-invariant and time-varying versions of MVDR beam-
forming [1], rank-1 MWF beamforming, and full-rank MWF [5].

2. BEAMFORMING

We use three beamforming methods, namely, MVDR, rank-1 MWF,
and full-rank MWF. We review these beamforming methods from
two perspectives: the propagation process of each source and the
estimation method of the filter. First, we define two kinds of propa-
gation processes from each sound source to a microphone array. The
first one, which we call the rank-1 propagation process, is modeled
by using a single steering vector for each source. It considers mainly
a direct wave. The second one, which we call the full-rank propa-
gation process, considers a more complicated propagation process.
It is modeled with a full-rank spatial covariance matrix. Second, we
consider two estimation methods to obtain a beamforming filter. One
estimation method is the maximum a posteriori estimation method,
in which a target speech signal is assumed to follow a Gaussian dis-
tribution. The other method is the maximum likelihood estimation
method, in which the assumption on a target speech signal is not
considered. Table 1 summarizes the relationship among these beam-
forming methods.

These beamforming methods are performed in the short-time
Fourier transform (STFT) domain. Let xft ∈ CM be an observed
signal picked up with an M -channel microphone array in frequency
bin f and time frame t. These methods apply a linear filter wft ∈
CM to the multichannel observed signal in order to produce an en-
hanced target signal yft ∈ C:

yft =wH
ftxft. (1)

Before explaining each beamforming method, we declare the nota-
tion on steering vectors and the spatial covariance matrices as shown
in Table 2.

In MVDR beamforming [1], a multichannel observed signal xft

is assumed as follows:

xft = pfsft + nft, (2)

Table 2. Notation on steering vector and spatial covariance matrix.

Signal Target speech Noise Source l

Steering vector p - rl

Spatial covariance matrix P Q Rl

where sft ∈ C is a single target speech signal, pf ∈ CM is a
steering vector of the target speech, and nft ∈ CM is noise signal.
sft = pfsft ∈ CM is a target speech image, and the target speech
is assumed to propagate in the rank-1 propagation process. The noise
signal follows a Gaussian distribution with a mean of 0 ∈ CM and
a full-rank spatial covariance matrix of the noise Qf ∈ CM×M ,
and the noise is assumed to propagate in the full-rank propagation
process. The observed signal also follows a Gaussian distribution:
xft ∼ NC(pfsft,Qf ). Then, the residual noise is minimized with
the constraint such that any signals from the target speech direction
remain distortionless. It leads to the following widely-used time-
invariant MVDR beamforming filter:

wMVDR
f =

Q−1
f pf

pH
f Q−1

f pf

, (3)

which is also obtained by maximizing the likelihood function
p(xft|sft) without using an assumption on the target speech [22].
Furthermore, we can assume that the spatial covariance matrix is
time-varying (Qf → Qft). Accordingly, the time-varying MVDR
beamforming filter is obtained:

wMVDR
ft =

Q−1
ft pf

pH
f Q−1

ft pf

. (4)

With the same assumption on the propagation as in the MVDR
beamforming, rank-1 MWF beamforming assumes the target speech
follows a Gaussian distribution: sft ∼ NC(0, ϕf ). Let ϕf ∈ C
be a variance of the target source. Accordingly, the rank-1 MWF
beamforming filter is obtained by maximum a posteriori estimation
that maximizes p(sft|xft):

wr1MWF
f =

Q−1
f pf

pH
f Q−1

f pf + ϕ−1
f

, (5)

wr1MWF
ft =

Q−1
ft pf

pH
f Q−1

ft pf + ϕ−1
f

. (6)

When the assumption is not used (or the variance of the target source
ϕf → ∞ in Eqs. (5) and (6)), the rank-1 MWF beamforming is
equivalent to the MVDR beamforming [5].

We can also use full-rank MWF for spatial filtering. A multi-
channel observed signal is assumed to be as follows:

xft =

L∑
l=1

xftl, (7)

where xftl ∈ CM is an source image from a source l picked up with
an M -channel microphone array. The l-th source image xftl fol-
lows a Gaussian distribution with a mean of 0 and a full-rank spatial
covariance matrix Rfl ∈ CM×M . We regard l = 1 is the index
for the target speech and the rest are noise. The target speech image
sft = xft1 follows a Gaussian distribution with a full-rank spa-
tial covariance matrix of the target speech P f = Rf1 ∈ CM×M :

5735



sft ∼ NC(0,P f ). The noise signal nft =
∑

l̸=1 xftl follows
a Gaussian distribution with the full-rank spatial covariance matrix
Qf =

∑
l̸=1 Rfl. Both of the target speech and noise are assumed

to propagate in the full-rank propagation process. The observed sig-
nal xft also follows a Gaussian distribution: xft ∼ NC(sft,Qf ).
Full-rank MWF is also obtained using maximum a posteriori estima-
tion that maximizes p(sft|xft):

wfrMWF
f =(P f +Qf )

−1P fu, (8)

wfrMWF
ft =(P ft +Qft)

−1P ftu, (9)

where u ∈ CM is an M -dimensional unit vector whose elements
are all 0 except the element corresponding to the reference channel.
It is fixed to the first channel in this study. Full-rank MWF is directly
constructed from the spatial covariance matrices which maintain in-
formation on the scale and reverberation [5].

3. PROPOSED METHOD

For effective beamforming, it is important to estimate the spatial co-
variance matrices of speech and noise accurately. Recently, DNN-
based TF mask estimation has been widely used for spatial covari-
ance matrix estimation [7–12]. This section describes the proposed
unsupervised estimation method based on a multichannel source sep-
aration framework which preserves phase information of each source
unlike the conventional mask-based methods.

3.1. Spatial covariance matrix estimation based on MNMF

MNMF is a source separation method based on a factorization
model [16]. The model is a multichannel extension of NMF, which
decomposes a given nonnegative matrix X into two smaller non-
negative matrix pairs, B and C. In speech signal processing, a set
of frequency spectra is identified by the basis matrix B along with a
set of temporal activation represented by the activation matrix C.

It is necessary for source separation with an M -channel micro-
phone array to consider the spatial propagation process. MNMF
treats the observed signal as an Hermitian positive semi-definite ma-
trix Xft = xftx

H
ft ∈ CM×M . The diagonal components of the

matrix represent values of power of the M channels, and the off-
diagonal components represent correlations between the channels.
MNMF introduces a matrix Hfl ∈ CM×M that models the spa-
tial property of the l-th sound source at the frequency bin f . Let
zlk ∈ [0, 1] indicate whether the k-th NMF basis belongs to the l-th
cluster (zlk = 1) or not (zlk = 0). MNMF employs a factorization
model as follows:

X̂ft =

K∑
k=1

(
L∑

l=1

Hflzlk

)
bfkckt, (10)

where bfk ∈ R+ and ckt ∈ R+ are the basis and activation, and
they represent the low-rank structure of the sound source. MNMF
factorizes a hierarchically structured matrix X into a product of
[(HZ) ◦B] and C, where ◦ represents the Hadamard product.

We estimate optimal Hfl, zlk, bfk and ckt with the factorization
model in Eq. (10). The MNMF algorithm to minimize the following
IS divergence between the given matrix Xft and its factorization
model was derived as the form of multiplicative update formulas by
Sawada et al. [16].

DIS(X, {H,Z,B,C}) =
F∑

f=1

T∑
t=1

dIS(Xft, X̂ft). (11)

To calculate the beamforming filters, we need to compute the
spatial covariance matrices of speech and noise, P and Q. We as-
sume that the sound source l = 1 given the special initial value
described in the following Section 3.2 is the target speech. Hence,
we can define the matrices as follows:

P ft =

K∑
k=1

Hf1z1kbfkckt, (12)

Qft =
K∑

k=1

(
L∑

l=2

Hflzlk

)
bfkckt, (13)

P f =
1

T

T∑
t=1

P ft, (14)

Qf =
1

T

T∑
t=1

Qft. (15)

3.2. Initialization of MNMF

The performance of MNMF heavily depends on the initial value of
the matrix Hfl [21]. To initialize Hfl effectively, we used rank-1
MNMF [18] and the cross-spectrum method [23]. Rank-1 MNMF,
which has the same structure as MNMF, approximates Hfl as a
rank-1 matrix, and is less sensitive to initial values. This matrix
is represented by an outer product of a steering vector of the source
l, rfl ∈ CM : Hfl = rflr

H
fl. Rank-1 MNMF estimates a steering

vector of each sound source in an unsupervised manner [18]. We
initialize Hfl using these estimated steering vectors. For further
stability, the steering vector corresponding to the target speech rf1

is initialized with the cross-spectrum method [23]. Other parameters
are initialized with random values.

3.3. Steering vector estimation

The steering vector pf is approximated as the principal component
of the spatial covariance matrix of the target speech P f :

pf = PE{P f}, (16)

where PE{·} represents the principal eigenvector of a matrix.
The rank-1 MWF beamforming filter requires the variance of the

target speech ϕf in Eqs. (5) and (6). By approximating the spatial
covariance matrix P f as ϕfpfp

H
f , we obtain the ϕf as follows:

ϕf ≃ ∥P f∥
∥pfp

H
f ∥

, (17)

where ∥ · ∥ represents the matrix norm of a matrix.

4. EXPERIMENTAL EVALUATION

We evaluated the proposed methods through speech recognition ex-
periments in real noisy environments. Two distinct ASR tasks were
used. One is from the third CHiME Challenge [2] where plenty of
training data are available, and the other is a task using our in-house
data which are new to models trained with the CHiME data set.

4.1. Experimental settings

In the third CHiME Challenge [2], the noisy training set consists
of 1,600 real noisy utterances and 7,138 simulated noisy utterances
generated by artificially mixing the clean WSJ0 training set with
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Table 3. MNMF experimental conditions.

Sample frequency 16 kHz
Frame length 64 ms
Frame overlap 10 ms
Number of microphones 5
Number of expected sources 5
Number of bases 25
Number of updates 200

background noise. Each utterance consists of six channels, from
which we used five by eliminating channel 2 facing the opposite
direction. There are four different types of noise environments,
namely, bus, street, cafe, and pedestrian area. We evaluated the
ASR performance with word error rate (WER) using the real noisy
evaluation set consisting of 1320 utterances (“et05 real noisy”). We
trained a DNN-HMM acoustic model [24, 25] using the training set
described above. It had four hidden layers with 2k rectified linear
units (ReLUs) [26] and a softmax output layer with 2k nodes. Its
input is a 1,320-dimensional feature vector consisting of 11 frames
of 40-channel log Mel-scale filterbank (lmfb) outputs and their delta
and acceleration coefficients. Mean and variance normalization was
applied to input vectors. Dropout [27] and batch normalization [28]
were used in the training of all hidden layers. The language model
was the standard WSJ 5k trigram LM. The Kaldi WFST decoder [29]
was used for decoding.

The other ASR task is an in-house test set (“noisy JNAS”),
which consists of 200 sentences from the Japanese newspaper arti-
cle sentence (JNAS) [30] corpus spoken by five male speakers in a
crowded cafeteria. The utterances were recorded with a five-channel
microphone array. For realistic scenario for distant ASR systems,
we constructed a hemispherical array with micro-electro-mechanical
systems (MEMS) microphone elements, which are increasingly be-
ing used in commercial products. The distance between the speakers
and the array was set to be around 1m. The DNN-HMM acoustic
model was also trained using multi-condition data, in which the
noise data of the CHiME-3 were added to the original clean speech
data of the JNAS. It had six hidden layers with 2048 sigmoidal
nodes and an output layer with 3k nodes. A trigram language model
was also trained using the JNAS. We used the Julius decoder [31].
The noisy JNAS test set has a lot of different characteristics from the
CHiME-3 test set, as it was recorded in a new noisy environment,
and the microphone type and geometry were also different.

We performed MNMF with the configurations shown in Table 3.
Each beamforming method constructs its filter from the same spa-
tial covariance matrices estimated by MNMF to ensure that ran-
domness on the initial values does not affect experimental results.
We used Beamformit [14] as a baseline for comparison. We also
trained a feed-forward DNN for mask estimation using the IBM as
the target. We also tried to use bidirectional long short-term mem-
ory (BLSTM) [9], but the feed-forward DNN slightly outperformed
BLSTM in our preliminary experiments, thus we show the results
obtained with the feed-forward DNN. The DNN structure is the same
as the acoustic model for the CHiME-3 ASR task, except that the in-
put feature is a 1,110-dimensional feature vector consisting of 11
frames of static 100-dimensional lmfb outputs, and the output is a
201-dimensional frequency mask. The DNN was trained using the
CHiME-3 data set to generate TF masks for MVDR and GEV beam-
forming (DNNm-MVDR and GEV) and used in both CHiME-3 and
noisy JNAS evaluation sets.

Table 4. Speech recognition performances (WER) on the CHiME-3
ASR task and the noisy JNAS ASR task.

Methods Time Eq. CHiME-3 noisy JNAS

Not Enhance - - 22.39 41.34
Beamformit Invariant - 15.60 35.28

DNNm-MVDR Invariant - 11.51 16.59
DNNm-GEV Invariant - 11.02 12.40

MNMF-MVDR Invariant (3) 12.63 11.58
Varying (4) 12.61 11.68

MNMF-r1MWF Invariant (5) 12.61 11.79
Varying (6) 12.46 10.85

MNMF-frMWF Invariant (8) 12.89 11.24
Varying (9) 12.70 11.24

4.2. Experimental results

The speech recognition performances in WER are listed in Table 4.
In the CHiME-3 ASR task, the best-proposed method, time-varying
rank-1 MWF with MNMF-based estimation (MNMF-r1MWF),
achieved a 3.14 points lower WER than Beamformit. Although our
methods did not achieve comparable WERs to DNN-based beam-
forming methods which were trained using the matched data to the
test environment, the proposed methods showed consistently high
performance without prior learning.

The noisy JNAS ASR task was conducted assuming there are
no data for retraining. Time-varying MNMF-r1MWF achieved
the WER of 10.85%, which is 12.5% relative improvement from
state-of-the-art DNNm-GEV. The noisy JNAS task was much
different from the CHiME-3 task in terms of microphone setups
and noise environments. Compared with our methods, the DNN-
based beamforming performance deteriorated significantly in the
unknown recording condition. In contrast, the proposed methods
using MNMF maintained the high performance on both tasks.

Rank-1 MWF beamforming was the most effective in combina-
tion with the proposed MNMF-based estimation method. Rank-1
MWF assumes that the propagation process of the target speech
considers mainly a direct wave. The assumption is adequate in
open spaces or large rooms, and can be a reason why rank-1 MWF
showed the best performance in our data set recorded in a large cafe-
teria. Compared with MVDR, rank-1 MWF incorporates the scale
of the target speech, which may have resulted in improved ASR
performance. Use of a time-varying noise spatial covariance matrix
yielded a further improvement since the spatial covariance matrix
was estimated for every time frame with the proposed MNMF-based
method. It suggests that tracking non-stationary noise is important
in beamforming.

5. CONCLUSION

We presented unsupervised speech enhancement methods based on
integration of beamforming and MNMF. The proposed methods use
MNMF to estimate the spatial covariance matrices of speech and
noise with preserving their phase information without using any su-
pervised training and then generate an enhanced speech signal with
beamforming. The experimental results in real-recording ASR tasks
demonstrated that the proposed methods are more robust in an un-
known environment than the state-of-the-art beamforming method
with DNN-based mask estimation. We plan to develop an online
version of the proposed method.
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