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ABSTRACT

In this paper, we present an algorithm which introduces phase-

perturbation to the training database when training phase-sensitive

deep neural-network models. Traditional features such as log-mel or

cepstral features do not have have any phase-relevant information.

However features such as raw-waveform or complex spectra fea-

tures contain phase-relevant information. Phase-sensitive features

have the advantage of being able to detect differences in time of

arrival across different microphone channels or frequency bands.

However, compared to magnitude-based features, phase information

is more sensitive to various kinds of distortions such as variations in

microphone characteristics, reverberation, and so on. For traditional

magnitude-based features, it is widely known that adding noise or

reverberation, often called Multistyle-TRaining (MTR), improves

robustness. In a similar spirit, we propose an algorithm which in-

troduces spectral distortion to make the deep-learning models more

robust to phase-distortion. We call this approach Spectral-Distortion

TRaining (SDTR). In our experiments using a training set consist-

ing of 22-million utterances with and without MTR, this approach

reduces Word Error Rates (WERs) relatively by 3.2 % and 8.48 %

respectively on test sets recorded on Google Home.

Index Terms— Far-field Speech Recognition, Deep-Neural

Network Model, Phase-Sensitive Model Spectral Distortion Model,

Spectral Distortion Training, Phase Distortion Training

1. INTRODUCTION

After the breakthrough of deep learning technology [1, 2, 3, 4, 5, 6],

speech recognition accuracy has improved dramatically. Recently,

speech recognition systems have begun to be employed not only in

smart phones and Personal Computers (PCs) but also in standalone

devices in far-field environments. Examples include voice assis-

tant systems such as Amazon Alexa and Google Home [7, 8]. In

far-field speech recognition, the impact of noise and reverberation

is much larger than near-field cases. Traditional approaches to far-

field speech recognition include noise robust feature extraction algo-

rithms [9, 10], on-set enhancement algorithms [11, 12], and multi-

microphone approaches [13, 14, 15, 16, 17].

It has been known that the Inter-microphone Time Delay (ITD)

or Phase Difference (PD) between two microphones may be used to

identify the Angle of Arrival (AoA) [18, 19]. The Inter-microphone

Intensity Difference (IID) may also serve as a cue for determining

the AoA [20, 21]. A different approach to this problem is using

multi-channel features which contain temporal information between

two microphones such as Complex Fast Fourier Transform (CFFT)

[8, 7]. To train an acoustic model using these features, we need

†Work performed while at Google.

to collect a large number of utterances collected using that specific

model of devices in real environments. Since multi-channel utter-

ances have device-dependent characteristics such as the number of

microphones and the distance between microphones, we need to re-

collect multi-channel utterances for each device model. Thus, data

collection is a critical problem for multi-channel features. To tackle

this problem, we developed the “room simulator” [7] to generate

simulated multi-microphone utterances for training multi-channel

deep-neural network model. Multi-style Training (MTR) [22] driven

by this room simulator was employed in training the acoustic model

for Google Home [7, 8].

However, the room simulator in [7] still has its limitations. It

assumes that all the microphones are ideal, which means that they

all have zero-phase all-pass responses. Even though this assumption

is very convenient, it is not true with actual microphones due to mi-

crophone spectrum distortion. In addition, there may be reasons for

distortion such as electrical noise in the circuit, acoustic auralization

effect from the hardware surface, and various vibrations. In conven-

tional MTR, we usually only add additive noise and reverberation to

the training set; we do not model the magnitude or phase distortion

across different filter bank or microphone channels. In this paper,

we propose an algorithm that makes phase-sensitive deep learning

model more robust by adding phase distortion to the training set.

2. SPECTRAL-DISTORTION TRAINING (SDTR) FOR

PHASE-SENSITIVE DEEP NEURAL NETWORKS

In this section, we explain the entire structure of Spectral-Distortion

TRaining (SDTR), and its subsets Phase-Distortion TRaining

(PDTR) and Magnitude Distortion TRaining (MDTR). PDTR is

a subset of SDTR where distortion is only applied to the phase com-

ponent without modifying the magnitude component of complex

features. MDTR is a subset of SDTR where distortion is applied

only to the magnitude component of such features. PDTR is devised

for enhancing the robustness of phase-sensitive multi-microphone

neural network models such as those presented in [8, 23].

2.1. Acoustic modeling with Spectral-Distortion TRaining (SDTR)

Fig. 1 shows the structure of the acoustic model pipeline using the

SDTR to train multi-channel deep neural networks. The pipeline

is based on our work described in [7, 8]. The first stage of the

pipeline in Fig 1 is the room simulator to generate acoustically sim-

ulated utterances in millions of different virtual rooms [7]. To make

the phase-sensitive multi-channel feature more robust, we add the

Spectral Distortion Model (SDM) to each channel. Mathematically,

SDM is described in (1). As input, we use the Complex Fast Fourier

Transform (CFFT) feature whose window size is 32 ms, and the in-

terval between successive frames is 10 ms. We use the FFT size of
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Fig. 1: A pipeline containing the Spectrum Distortion Model

(SDM) (contained in the dashed box) for training deep-neural

networks for acoustic modeling.

N = 512. Since FFT of real signals have Hermitian symmetry, we

use the lower half spectrum whose size given by N/2 + 1 = 257.

Since it has been shown that long-duration features represented by

overlapping features are helpful [24], four frames are stacked to-

gether and the input is downsampled by a factor of 3. Thus we use

a context dependent feature consisting of 2056 complex numbers

given by 257 (the size of the lower half spectrum) x 2 (number of

channels) x 4 (number of stacked frames). The acoustic model is the

factored complex linear projection (fCLP) model described in [8].

fCLP model passes the CFFT features to complex valued linear lay-

ers that mimic filter-and-sum operation in the spectral domain. The

output is then passed to a complex linear projection layer [25], fol-

lowed by a typical multi-layer Long Short-Term Memory (LSTM)

[26, 27] acoustic model. We use 4-layer LSTM with 1024 units in

each layer. The output of the final LSTM layer is passed to a 1024

unit Deep Neural Network (DNN), followed by a softmax layer. The

softmax layer has 8192 nodes corresponding to the number of tied

context-dependent phones in our ASR system. The output state la-

bel is delayed by five frames, since it was observed that the informa-

tion about future frames improves the prediction of the current frame

[7, 8].

2.2. Spectral Distortion Model (SDM)

The spectrum distortion procedure is summarized by the following

pseudo-code:

for each utterance in the training set do

for each microphone channel of the utterance do

Create a random Spectral Distortion Model (SDM) using

(1).

Perform Short-Time Fourier Transform (STFT).

Apply this transfer function to the spectrum.

Re-synthesize the output microphone-channel using Over-

Lap Addition (OLA).

STFT

Spectral Distortion
Model
Dl(e

jωk)

Segmentation
into Overlapping

Frames

IFFT

Overlap Addition

Input Audio Signal xl[n]

Output Audio Signal yl[n]

Fig. 2: A diagram showing the structure of applying Spectrum

Distortion Model (SDM) in (1) to each microphone channel. Note

that l in this diagram denotes the microphone channel index.

end for

end for

For each microphone channel of each utterance, we create a single

Spectral Distortion Model (SDM). This random model is not regen-

erated for each frame. The Spectral Distortion Model (SDM) is de-

scribed by the following equation:

Dl(e
jωk ) = eaml(k)+jpl(k), 0 ≤ k ≤

K

2
,

0 ≤ l ≤ L− 1. (1)

where l is the microphone channel index and L is the number of

microphone channels. In the case of Google Home, since we use two

microphones, L = 2. k is the discrete frequency index, ωk is defined

by ωk = 2πk
K

where K is the Discrete Fourier Transform(DFT)

size. ml(k) and pl(k) are Gaussian random samples pulled from the

following Gaussian distributions m and p respectively:

m ∼ N (0, σ2
m) (2a)

p ∼ N (0, σ2
p) (2b)

The scaling coefficient a in (1) is defined by the following equation:

a = ln(10.0)/20.0 (3)

This scaling coefficient a is introduced to make σm the stan-

dard deviation of the magnitude in decibels, which makes it easier

to control the amount of distortion. From (1), it should be evident

that ml(k) and pl(k) are related to the magnitude and phase distor-

tion, respectively. The magnitude distortion is accomplished by the

eaml(k) term. Using the properties of logarithm, we observe that the

standard deviation of magnitude in decibel
(
20 log10

∣
∣Dl(e

jωk )
∣
∣) is

given by σm. For the phase term, since the complex exponential

has a period of 2π, the distribution actually becomes the wrapped

Gaussian distribution [28].

After creating the spectrum distortion transfer function Dl

(
ejωk

)

in (1), we process each channel using the structure shown in Fig. 2.

We apply the Hanning window instead of the more frequently-used

Hamming window to each frame. We use the Hanning window

to better satisfy the OverLap-Add (OLA) constraint. After mul-

tiplying the complex spectrum of each frame with the spectrum
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distortion transfer function Dl

(
ejωk

)
in the frequency domain, the

time-domain signal is re-synthesized using OverLap-Add (OLA)

synthesis. This processing is shown in detail in Fig. 2. The reason

for going back to the time domain is because we use Complex Fast

Fourier Transform (CFFT) as feature whose frame size is 32 ms in

Fig. 1, which does not match the processing window size of SDM.

We segment each microphone channels into successive frames with

the frame length of 10 ms. The period between successive frames is

5 ms. This frame length is chosen based on the experimental results

in Sec. 2.3. The spectrum distortion effects from Dl(e
jωk ) in Fig.

2 is not removed by either the conventional Causal Mean Subtrac-

tion (CMS) [29], nor Cepstral Mean Normalization (CMN). This is

because our feature and the SDM model are complex numbers and

functions, and CMS and/or CMN operates on the magnitude.

2.3. Word Error Rate(WER) dependence on σm, σp and frame

length

Table 1 shows speech recognition results in terms of Word Error Rate

(WER) using PDTR with different values of σp and frame lengths.

The configurations for speech recognition training and evaluation

will be described in detail in Sec. 3. The evaluation set used in Ta-

ble 1 through Table 4 are the combinations of five rerecording sets

described in Sec. 3, which are three rerecording sets using differ-

ent Google Home devices, and two rerecording sets in presence of

Youtube noise and interfering speakers. The best result in Table 1

(49.77 % WER) is obtained when σp = ∞ with the window length

of 32 ms. Table 2 shows Word Error Rates (WERs) using MDTR on

the same test set using the same configuration as in Table 1 with dif-

ferent σm values. In these experiments, we observe significant im-

provement with PDTR and MDTR over the baseline system, which

shows WER of 62.0 % on the same test set.

When training acoustic models for Google Home, we have been

using data generated by the room simulator [7]. Table 3 and Table

4 show the WERs when the PDTR or MDTR is applied with the

Multi-style TRaining (MTR) driven by this “room simulator”. Even

though relative improvement over the MTR baseline in Table 3 and

Table 4 is less than the relative improvement in Table 1 and Table 2,

we still obtain substantial improvement over the baseline.

From the results from Table 1 to Table 4, we observe that PDTR

is more effective than MDTR in our acoustic model using CFFT

feature. We also tried combinations of PDTR and MDTR, but we

could not obtain results better than only using PDTR. Thus, in the

final system, we adopt PDTR with σp = 0.4 as the default Spectral

Distortion Model (SDM) in (1).

3. EXPERIMENTAL RESULTS

In this section, we shows experimental results obtained with the

SDTR training. For training, we used an anonymized 22-million En-

glish utterances (18,000-hr), which are hand-transcribed. For train-

ing the acoustic model, instead of directly using these utterances,

we use the room simulator described in [7] to generate acoustically

simulated utterances for our hardware. In the simulator, we use the

7.1 cm distance between two microphones. For each utterance, one

room configuration was selected out of three million room configu-

rations with varying room dimension, and varying the target speaker

and noise source locations. In each room, number of noise sources

may be up to three. This configuration changes for each training ut-

terance. After every epoch, we apply a different room configuration

to the utterance so that each utterance may be regenerated in some-

what different ways. For additive noise, we used Youtube videos,

Table 1: Word Error Rates (WERs) using

the PDTR training

baseline σp = 0.1 σp = 0.4 σp = ∞

frame

length

10 ms
62.00%

57.16 % 56.74 % 54.03 %

32 ms 59.03 % 57.14 % 49.77 %

Table 2: Word Error Rates (WERs) using

the MDTR training

baseline σm = 0.5 σm = 1.0 σm = 2.0

frame

length

10 ms
62.00%

60.39 %

32 ms 52.21 % 53.03 % 55.37 %

Table 3: Word Error Rates (WERs) using

the PDTR and MTR training

MTR

baseline
σp = 0.1 σp = 0.4 σp = ∞

frame

length

10 ms

29.34%

28.63 % 28.40 % 29.78 %

32 ms 29.28 % 30.34 %

160 ms 28.69 % 31.36 % 37.82 %

Table 4: Word Error Rates (WERs) using

the MDTR and MTR training

MTR

baseline
σm = 0.5 σm = 1.0 σm = 2.0

frame

length

10 ms

29.34%

31.13 %

32 ms 28.46 % 28.78 % 28.70 %

160 ms 29.01 % 29.55 %

recordings of daily activities, and recordings at various locations in-

side cafes. We picked up the SNR value from a distribution ranging

from 0 dB to 30 dB, with an average of 11.08 dB. We used reverber-

ation time varying from 0 ms up to 900.0 ms with an average of 482

ms. To model reverberation, we employed the image method [30].

We constructed 173 − 1 = 4912 virtual sources for each real sound

source. The acoustic model was trained using the Cross-Entropy

(CE) minimization as the objective function after aligning each utter-

ance. The Word Error Rates (WERs) are obtained after 120 million

steps of acoustic model training.

For evaluation, we used around 15-hour of utterances (13,795

utterances) obtained from anonymized voice search data. Since our

objective is evaluating speech recognition performance when our

system is deployed on the actual hardware, we re-recorded these

utterances using our actual devices in a real room at five different

locations. The utterances were played out using a mouth simula-

tor. We used three different devices (named “Device 1”, “Device

2”, and “Device 3”) as shown in Table 5 and 6. These three devices

are prototype Google Home devices. Each device is placed at five

different positions and orientations in a real room with mild rever-
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Table 5: Word Error Rates (WERs) obtained with the PDTR (σm = 0.0, σp = 0.4) training

Baseline PDTR
Relative

improvement (%)

Original Test Set 12.02 % 12.32 % -2.53 %

Simulated Noise Set 1 20.34 % 20.72 % -1.86 %

Simulated Noise Set 2 47.88 % 46.69 % 2.50 %

Rerecording using “Device 1” 50.14 % 42.87 % 14.51 %

Rerecording using “Device 2” 48.65 % 43.32 % 10.95 %

Rerecording using “Device 3” 56.27 % 51.30 % 8.83 %

Rerecording with youtube background noise 76.01 % 71.42 % 6.04 %

Rerecording with multiple interfering speaker noise 78.95 % 74.80 % 5.26 %

Average from rerecording sets 62.00 % 56.74 % 8.48 %

Table 6: Word Error Rates (WERs) obtained with

the PDTR (σm = 0.0, σp = 0.4) training combined with room-simulator based MTR in [7]

MTR PDTR + MTR
Relative

improvement (%)

Original Test Set 11.97 % 11.99 % -0.17 %

Simulated Noise Set 1 14.73 % 15.03 % -2.04 %

Simulated Noise Set 2 19.55 % 20.29 % -3.79 %

Rerecording using “Device 1” 21.89 % 20.86 % 4.71 %

Rerecording using “Device 2” 22.23 % 21.29 % 4.22 %

Rerecording using “Device 3” 22.05 % 21.65 % 1.81 %

Rerecording with youtube background Noise 34.83 % 34.21 % 1.78 %

Rerecording with multiple interfering speaker noise 44.79 % 44.00 % 1.76 %

Average from rerecording sets 29.34 % 28.40 % 3.20 %

beration (around 200 ms reverberation time). The entire 15-hour test

utterances are rerecorded using each device. We also prepared two

additional rerecorded sets in presence of Youtube noise and inter-

fering speaker noise played through real loud speakers. The noise

level varies, but it is usually between 0 and 15 dB SNR. Each of

these noisy rerecording sets also contains the same 15-hour long ut-

terances with subsets being recorded at five different locations. In

total, there are five rerecording test sets in Table 5 and Table 6. In

addition to the real rerecorded sets, we evaluated performance on

two simulated noise sets created using the same utterances using the

“room simulator” in [7]. Note that in these two simulated noise sets,

we assume that all microphones are identical without any magnitude

or phase distortion. We are mainly interested in performance on the

rerecorded sets, but we also included these simulated noise sets for

the purpose of comparison.

In Table 5, we compare the performance of the baseline sys-

tem with the PDTR system. The baseline Word Error Rates (WERs)

are high on rerecorded test sets because the baseline system was not

processed by MTR using the room simulator in [7]. Based on our

analysis in Sec. 2, we use the PDTR of σm = 0.0, σp = 0.4 in

(2) as our Spectral Distortion Model (SDM). As shown in these two

tables, PDTR shows significantly better results than the baseline for

rerecorded sets while doing on par or slightly worse on two simu-

lated noisy sets, which is expected.

As shown in Tables 5 and 6, the final system shows relatively

8.48 % WER reduction for the non-MTR training case and relatively

3.2 % WER reduction for the MTR training case using the room

simulator described in [7].

4. CONCLUSIONS

In this paper, we described Spectral Distortion TRaining (SDTR)

and its subsets Phase Distortion TRaining (PDTR) and Magnitude

Distortion TRaining (MDTR). These training approaches apply the

Spectral Distortion Model (SDM) to each microphone channel of

each training utterance. This algorithm is developed to make the

phase-sensitive neural net model robust against various distortions

in signals. Our experimental results show that the phase-sensitive

neural-net trained with PDTR is much more robust against real-

world distortions. The final system shows relatively 3.2 % WER

reduction over the MTR training set in [7] for Google Home.
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