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ABSTRACT

This paper proposes a framework that combines teacher-student
training and permutation invariant training (PIT) for single-channel
multi-talker speech recognition. In contrast to most of conventional
teacher-student training methods that aim at compressing the model,
the proposed method distills knowledge from the single-talker model
to improve the multi-talker model in the PIT framework. The inputs
to the teacher and student networks are the single-talker clean speech
and the multi-talker mixed speech, respectively. The knowledge is
transferred to the student through the soft labels generated by the
teacher. Furthermore, the ensemble of multiple teachers is exploited
with a progressive training scheme to further improve the system. In
this framework it is easy to take advantage of data augmentation and
perform domain adaptation for multi-talker speech recognition using
only untranscribed data. The proposed techniques were evaluated
on artificially mixed two-talker AMI speech data. The experimental
results show that the teacher-student training can cut the word error
rate (WER) by relative 20% against the baseline PIT model. We
also evaluated our unsupervised domain adaptation method on an
artificially mixed WSJO corpus and achieved relative 30% WER
reduction against the AMI PIT model.

Index Terms— permutation invariant training, knowledge dis-
tillation, multi-talker speech recognition, unsupervised training

1. INTRODUCTION

Tremendous progresses have been made in near-field single-talker
automatic speech recognition (ASR) in past several years [1, 2, 3,
4,5, 6,7, 8]. However, under the far-field multi-talker scenario the
ASR system still performs poorly. This is because the signal to noise
ratio (SNR) between the target speaker and the interfering speaker is
much lower than that when close-talk microphones are used.

In this paper, we aim to attack the single-channel multi-talker
speech recognition problem. Many attempts have been made to ad-
dress this problem. In [9], a deep learning model with two-branches
was developed in which the senone labels for each branch was as-
signed according to the instantaneous energy. In [10, 11], the deep
clustering (DPCL) technique was exploited to separate the multi-
talker mixed speech into multiple streams. An ASR engine was then
applied to these streams to recognize speech. In [12] the deep at-
tractor network (DANet) was proposed. In contrast to DPCL, sev-
eral cluster centers, referred to as attractor points, were created in
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the embedding space to pull together the time-frequency bins cor-
responding to the same source. In [13, 14], permutation invariant
training (PIT) was proposed to attack the multi-talker speech sepa-
ration problem using a simple but effective training criterion. More
recently, PIT was extended to conduct multi-talker speech recogni-
tion. Promising results were reported in [15, 16, 17, 18]. Despite all
these progresses, the performance gap between the multi-talker and
single-talker speech recognition is still large [16].

In this work, we propose to exploit the teacher-student training
in the PIT framework to improve the multi-talker speech recogni-
tion. In the conventional teacher-student training, knowledge is usu-
ally transfered from a large and complicated teacher network to a
small student network[19, 20, 21, 22, 23] to help reduce model foot-
print. The student tries to mimic the teacher by using the soft labels
estimated by the teacher. In [22], the soft label is referred to as dark
knowledge and is considered more important than hard labels for
deep learning. In [24, 25], the teacher-student training was proposed
to transfer knowledge from the clean-speech recognition model to
the noisy-speech recognition model.

Different from these prior arts, we aim at transferring knowledge
from the single-talker ASR model to the multi-talker ASR model in
the PIT framework. In our work, the inputs to the teacher and stu-
dent networks are the single-talker clean speech and the multi-talker
mixed speech, respectively. The knowledge is transferred to the stu-
dent through the soft labels estimated by the teacher. Furthermore,
the ensemble of multiple teachers is exploited with a progressive
training scheme to further improve the system. In this framework
it is easy to take advantage of data augmentation and perform do-
main adaptation for multi-talker speech recognition using only un-
transcribed data’.

The paper is organized as follows: In Section 2 we briefly in-
troduce PIT for single-channel multi-talker speech recognition. We
describe knowledge distillation and transfer in the PIT framework in
Section 3. In Section 4 we report experimental results. We conclude
the paper in Section 5

2. PERMUTATION INVARIANT TRAINING FOR
SINGLE-CHANNEL MULTI-TALKER ASR

Permutation invariant training (PIT) [13, 15] is an efficient and ef-
fective technique for solving the label ambiguity problem in deep
learning based multi-talker speech recognition. The basic architec-
ture of PIT for multi-talker speech recognition (PIT-ASR), proposed

We noticed that a similar idea was proposed in [26] and posted to arXiv
few weeks before this submission. Our work was conducted independently
of theirs. In contrast to their work, we proposed and studied different ar-
chitectures and conducted more comprehensive investigation including the
exploitation of the ensemble of teachers and the unsupervised adaptation.
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in our previous work [15], is depicted in the middle part of Figure 1.
In this model, the mixed speech O is sent to the deep learning model
to estimate the state-level posterior for each talker. For better abil-
ity of modeling long-range dependency, which can improve speaker
tracing, recurrent neural networks (RNNs) are usually used. In this
work, we apply bidirectional LSTM-RNNS in all models.
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Fig. 1. The basic permutation invariant training architecture and the
proposed knowledge distillation architecture for multi-talker speech
recognition

The key ingredient in PIT is its training criterion. Let 1° and y*
be the ground truth alignment and the estimated state-posterior of
stream s, respectively, the objective function in PIT is defined as

1
T=35. ' epormu(S) Z ZCE 1, y7) (1)

’
where s’ is a permutation of [1,2,--- , S] and lfs is the ground truth
label of stream s, at frame ¢. PIT aims to minimize the minimal
average cross entropy (CE) of the whole utterance among all possible
assignments of the reference to the estimated posterior.

With this criterion, the network can automatically estimate the
assignment. The CE is computed over the whole utterance so that
all frames that belong to the same speaker are forced to be aligned
with the same output segment (or branch). Moreover, compared to
DPLC [10] or DANet [12], this structure is much simpler since it
allows direct multi-talker mixed speech recognition without explicit
separation. After the PIT model training, the individual output pos-
terior stream can be used for decoding as normal to obtain the final
recognition result.

3. KNOWLEDGE DISTILLATION FROM
SINGLE-TALKER ACOUSTIC MODEL WITHIN PIT

3.1. Knowledge transfer within PIT
3.1.1. Conventional teacher-student training

Instead of using only hard labels in traditional machine learning
tasks, the teacher-student training additionally uses the posterior

probability generated by the teacher as the supervision. The objec-
tive function in the teacher-student training is defined as

CE(6;0,L) = —> > p'(ylor)logps(ylo) ()
t Y

Pylo) = 1=y 3
where po(y|o:) is the posterior generated by the student model,
p?f(y) is the reference distribution and is represented by a Kro-
necker delta function pi'(y) = 8(y, ;") and 1;°/ is the ground
truth label, which is referred to as hard label usually. preacher (y|0t)
is the posterior probability estimated by the teacher model, which is
also referred to as soft label because it is not a one-hot vector. A is
the interpolation weight, which is a hyper parameter. [22] suggested
that this new label p’(y|o:) can encode correlations among different
classes and is better than the hard label.

)\pleacher (y|0t)

3.1.2. Teacher-student Training in PIT

In most previous works the teacher-student training was used to
transfer knowledge from a larger teacher model to a smaller student
model to reduce model footprint. For this reason, the inputs to
both the teacher and student models are the same. Our proposed
method, however, transfers knowledge from a single-talker speech
recognition model (the teacher) to a multi-talker one (the student) to
improve the recognition accuracy of the student model. For this rea-
son, parallel data of original individual single-talker speech and the
corresponding multi-talker mixed speech, are used. The whole ar-
chitecture is illustrated in Figure 1. The inputs to the teacher model

’
are original single-talker speech streams o;*, and the inputs to the
student model are the corresponding multi-talker mixed speech oy.
The training criterion in this architecture is

J= ss Cpormu S>ZZZP ylot log p5(ylot) @)
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where pj(y|o:) is the posterior of stream s estimated by the stu-

dent model, pref (y) = 4y, l:;) is the reference distribution.

Preacher (y\ots) is the posterior estimated by the teacher model us-
ing original single-talker speech stream s. Different from the basic
PIT in Equation 1, we minimize the minimal average CE among all
possible assignment between model outputs and soft labels.

3.2. Knowledge Transfer from Ensemble of Teachers

In Section 3.1.2, the soft label is generated by a single teacher. It is
reasonable to believe that further performance improvement may be
achieved if the soft label is generated using an ensemble of teachers
[27] such that

Z wipk(ylog) ©)

pleacher |0t

where wi € [0,1]and ", wr = 1 are the interpolation weights.

o (y; . |o:) is the posterior estimated by different teacher models.

Instead of using the soft label averaged over those generated by
multiple teachers as the teacher provided supervision, we also devel-
oped a progressive ensemble learning scheme which obtained better
performance. As shown in algorithm 1, in this alternative approach,
the teacher-student learning is applied to the PIT model by using
the teachers one by one, in the ascending order of their recognition
performance on single-talker tasks.
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Algorithm 1 Progressive ensemble teacher-student training

1: Sort teacher models in ascending order of the performance on
single-talker task
2: for each i in all teachers do

3: for each j in all minibatches of training data do

4: Generate soft-targets for minibatch j using teacher
model ¢

5: Update neural network model with minibatch j

6: end for

7: Repeat 3 until converge

8: end for

3.3. Unsupervised Knowledge Transfer for Data Augmentation
and Domain Adaptation

The teacher-student training can be further extended by exploiting
large amount of unlabeled data. In the conventional teacher-student
training, the target distribution is a weighted sum of the hard and soft
labels. When unlabeled data are used, only the posterior estimated
by the teacher model is used as the supervision, i.e.,

1 . ’
/= S < cpermu(s) Z: Et: gpleacher(yk)js) log po(ylot)  (7)

Parallel data used as inputs to the model are still needed in this
setup. However, they are easy to generate since we can just vary
the relative energy of the involved talkers without transcribing the
source streams.

This approach also allows us to conduct fast domain adaptation
with only untranscribed target domain speech. More specifically, we
can first train a general PIT-based multi-talker ASR model and then
collect in-domain speech waveform without transcription and use
them to adapt the general model to generate the domain-dependent
model.

4. EXPERIMENT

To evaluate the performance of the proposed methods, experiments
were conducted on two artificially generated multi-talker mixed
speech datasets. One is based on AMI IHM corpus [28], which was
used in our previous work [16] and has been released to public by us.
Another is based on Wall Street Journal (WSJO) corpus [29], which
was used in [10] and released by MERL. The multi-talker AMI
IHM corpus consists of two setups: (1) full 400hr speech, with the
energy ratio of the two-talkers under five different SNR conditions
(0dB, 5dB, 10dB, 15dB, 20dB), each of which contains 80hr mixed
speech. (2) a subset of 80hr speech, which was used for fast model
training and evaluation. For evaluation, 8hr two-talker mixed speech
with all SNR levels is generated. More details can be found in [16].
Additional details on the multi-talker WSJ corpus can be found in
[10].

4.1. Baseline systems

In this work, all networks were built using the Microsoft Cogni-
tive Toolkit (CNTK2.0) [30] and the decoding was conducted using
Kaldi [31]. A single-talker LDA-MLLT-SAT GMM-HMM system
was first trained based on the standard Kaldi recipe using AMI IHM
data. This model uses 39-dim MFCC feature and has roughly 4K
tied-states and 80K Gaussians. This acoustic model was used to gen-
erate the senone alignment for neural network training. Then CNN

and BLSTM-RNN based acoustic models were constructed, 40 di-
mensional log filter bank (LFBK) features with CMVN was used to
train the baselines. The structure of CNN model is the same as that
in [32]. The BLSTM-RNN contains 3 bidirectional LSTM layers.
Each BLSTM layer has 768 memory cells. CE was used to train
all models. The CNN was optimized by SGD with minibatches of
256 samples, and the BLSTM-RNN was trained using SGD with 4
full-length utterances in each minibatch.

For decoding, a 50K-word dictionary and a trigram LM interpo-
lated from the LMs created using the AMI transcripts and the Fisher
English corpus were used. The performance of these two baselines
on the original single-speaker AMI IHM corpus are presented in Ta-
ble 1. We can observe that they achieve comparable performance on
this corpus.

Table 1. WER (%) of the baseline systems on original AMI IHM
single-talker corpus

CNN 26.6

Model || WER
BLSTM H 27.0

The basic PIT model proposed in our previous work [16] was
built. It contains 6 BLSTM layers, each of which contains 768 mem-
ory cells. The gradient was clipped to 0.0003 to guarantee the train-
ing stability. This model was trained by PIT-CE on the 80hr AMI
IHM-2mix subset, and the result was shown at the first row of Ta-
ble 2. This original PIT-CE ASR model can recognize two-talker
speech. However, there is still a large performance gap (WER is
doubled) between the two- and single-talker speech recognition sce-
nario. More advanced technologies are needed to improve the multi-
talker ASR system.

4.2. Experiment on teacher-student training

We investigated the different configurations of teacher-student train-
ing using the 80hr training subset. In this experiment, the posteri-
ors were obtained from the single-talker BLSTM-RNN model us-
ing original single-talker speech features, and the input for the PIT
model was still two-talker mixed speech features. The interpolation
weights and initialization modes were investigated, and the results
are shown in Table 2.

Table 2. WER (%) of the PIT model with teacher-student training
using different configurations on the 80hr AMI IHM-2mix dataset.
TS means teacher-student training.

. WER
Model Init A m
PIT Random | — 55.21 | 64.23
0.5 || 52.44 | 60.49
1S PIT 00 1l 5184 | 60.34
Random 0.5 || 51.28 | 59.27
1 51.07 | 59.12

It is observed that PIT-ASR with teacher-student training outper-
forms the baseline PIT-ASR system for both speakers. Random ini-
tialization (training from scratch) achieves better performance than
initialization from pre-trained PIT model. Simply using the soft la-
bel (A = 1.0, i.e., without using the hard label) performs the best.
Based on these experiments, random initialization from scratch and
A = 1.0 were used for all the rest experiments.

5716



4.3. Experiment on different teachers and teacher ensembles
P Table 4. Compare WER (%) with and without using the untran-

scribed data in the teacher-student training framework on the AMI
IHM-2mix dataset

Different teachers and teacher ensembles were evaluated. First, the
CNN and BLSTM baseline single-talker models were used as teach-

ers (shown in Table 1). The experimental results are shown in Table Model Teacher Data Label WER

3. Itis observed that all single-talker models can effectively improve SPK1 | SPK2
the multi-talker recognition accuracy with teacher-student training. PIT — 80hr Labeled 5521 | 64.23
Using CNN as the teacher obtained 2% absolute WER improvement — 400hr Labeled 49.19 | 57.06
than that using BLSTM-RNN. We conjecture that this may because BLSTM 80hr Labeled 51.07 | 59.12
the BLSTM-RNN is used in PIT-ASR model while CNN is not and +320hr | Unlabeled || 45.11 | 53.31
thus provides more complementary information. It is also possible +TS CNN 80hr labeled 4895 | 57.52
that posteriors provided by CNNs are more informative although the +320hr | Unlabeled || 44.59 | 52.25
WER obtained by the CNN model is only slightly lower than that BLSTM+CNN 80hr labeled 48.03 | 56.46
achieved by the BLSTM-RNN model. +320hr | Unlabeled || 43.58 | 51.29

Table 3. WER (%) of the teacher-student training using ensemble of
single-speaker teacher models on 80hr AMI IHM-2mix dataset

Table 5. Efficient domain adaptation from AMI Meeting speech to
WSIJ Reading speech for multi-talker speech recognition with only

WER untranscribed WSJ data. WER (%) on WSJ-2mix
Model Teacher SPKL | SPK2 System Teacher | WER
PIT — 55.21 | 64.23 PIT Baseline AMI 80hr — 51.81
BLSTM 51.07 | 59.12 + WSJ domain adaptation AMI BLSTM 38.77
+TS CNN 4895 | 57.52 PIT-TS AMI 400hr AMI BLSTM 43.50
BLSTM+CNN: interpolated || 49.34 | 57.78 + WSJ domain adaptation AMI BLSTM 36.59
BLSTM+CNN: progressive || 48.03 | 56.46 PIT-TS AMI 400hr AMI BLSTM+CNN || 38.56
+ WSJ domain adaptation | AMI BLSTM+CNN || 35.21

In addition, different teacher ensembles were evaluated. The in-
terpolation approach and the progressive approach were compared.
The results, shown in the bottom part of Table 3, indicate that differ-
ent ensemble achieves different performance for the teacher-student
training within the PIT framework. Surprisingly, the direct interpo-
lation of the two soft labels from individual teachers does not lead to
further improvement over the best single-model teacher (CNN in our
case). In contrast, the progressive ensemble that uses teachers one
by one in the ascending order of performance can achieve further
performance improvement compared to the single teacher.

4.4. Experiments on using untranscribed data
4.4.1. Experiments on data augmentation on AMI full set

As described in Section 3, we can exploit un-transcribed data to im-
prove the system performance. The full 400hr AMI IHM-2mix data
were used here. Except the original 80hr subset, the rest two-talker
mixed speech was used without transcription and senone-alignment.
Table 4 compares WER achieved with and without untranscribed
data augmentation on the AMI IHM-2mix dataset. It is observed
that using the knowledge distillation with additional untranscribed
data can obtain further improvement.

Shown in the last row of Table 4, using both the teacher en-
semble and un-transcribed data augmentation within the PIT-based
knowledge distillation framework achieves the best performance for
multi-talker ASR on AMI IHM-2mix dataset. Compared to the basic
PIT-ASR model, the new approach reduced WERs from 55.21% and
64.23% to 43.56% and 51.29% for two talkers respectively.

4.4.2. Experiments on fast domain adaptation

Finally, fast domain adaptation without transcription was explored.
The source domain is AMI meeting speech and the target domain
is WSJ reading speech. The target multi-talker mixed speech was
synthesized by mixing two separated clean utterances from WSJO

corpus [29]. A PIT-ASR model was trained for meeting speech us-
ing AMI IHM-2mix data and adapted to the WSJ reading speech.
The standard trigram language model and dictionary for WSJO were
used here for evaluation, generated by the standard Kaldi recipe.
The related results, reported in Table 5, show that the WER is very
high when using the AMI-based model to recognize WSJ two-talker
mixed speech directly, since there is a big mismatch on the acoustic
conditions. Using the proposed domain adaptation technique with
un-transcribed data reduced WER from 51.8% to 35.2%.

5. CONCLUSION

In this work, knowledge distillation and transfer was applied to
the PIT-ASR model to improve single-channel multi-talker speech
recognition. The knowledge is transferred from the single-talker
model to the multi-talker model. We also proposed the progressive
teacher ensemble technique to further improve knowledge distilla-
tion. We showed that the proposed framework allows exploitation of
untranscribed data to either improve the multi-talker speech recog-
nition accuracy or perform fast domain adaptation. The experiments
on the multi-talker AMI and WSJ corpora showed that the proposed
methods can significantly improves the performance of multi-talker
speech recognition.
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